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Kernel-Level Threads: Motivation
● Approach: Run applications “unnoticeably” as 

independent threads
– One OS coroutine per application
– Application is activated by being called
– Coroutine switch: indirect by system call

● Advantages:
– Independent application development
– Central scheduler implementation
– An application waiting for I/O can be “blocked” by the OS and 

“awakened” later
– Additional preemption mechanism can prevent CPU monopolization
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Preemptive Thread Switch
● Forced CPU removal via timer interrupt

– the interrupt is “just” an implicit call
– handler routine can call resume

Careful: In general it does not work this way, because resume 
makes a scheduling decision. We need to apply interrupt 
synchronization for the involved data structures!
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Thread Switch in the Epilogue
● Implementation

– Scheduler data (list of ready threads) reside on the epilogue level
– All system functions that manipulate these data

must acquire the epilogue lock before (enter/leave)
● Create thread, terminate thread, voluntary thread switch, …

● Basic rule for thread switches:
– the yielding thread requests the lock

(e.g. implicitly in interrupt handling)

– the activated thread must release the lock
● Tips:

– Never call enter from the epilogue (double request)
– Basic rule (see above) also holds for the first thread activation(!)

More on that in the exercises.More on that in the exercises.
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Scheduling: Classification by …
● Resource type of the scheduled hardware resource

● Operation mode of the controlled computer system

● Point in time when the schedule is determined

● Determinism of timing and duration of process runs

● Cooperation behavior of (user/system) programs

● Computer architecture of the system

● Decision-making level when scheduling resources
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● CPU scheduling of the resource “CPU”
– Process count at times higher than CPU count
– CPU(s) must be multiplexed for several processes
– Admission via waiting queue

● I/O scheduling of the resource “device”, particularly “disk”
– Device-specific scheduling of I/O jobs generated by processes
– e.g., disk scheduling usually takes into account these factors:

● (1) Positioning time, (2) rotation time, (3) transfer time
– Device parameters and device state determine the next I/O operation
– Scheduling decisions possibly not conforming to CPU scheduling

… by Resource Type
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… by Mode of Operation
● Batch scheduling of interaction-less programs

– non-preemptive scheduling
(or preemptive scheduling with long time slices)

– Context-switch count minimization
● Interactive scheduling of interactive programs

– Event-driven, preemptive scheduling with short time slices
– Partly response-time minimization by heuristics

● Real-time scheduling of time-critical programs
– Event- or time-driven deterministic scheduling
– Guarantee of keeping environment-specific deadlines
– Focus: Timeliness, not performance
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… by Point in Time
● Online scheduling dynamic, during actual program 

execution
– Interactive and batch systems, but also soft real-time systems

● Offline scheduling static, before actual program execution
– If complexity prohibits scheduling at runtime

● Guarantee keeping all deadlines: NP-hard
● Critical if we must react to any preventable catastrophic situation

– Result: Complete schedule (in tabular form)

● (Half) automatically generated via source-code analysis of a specialized 
“compiler”

● Often executed by a time-triggered scheduler
– Usually limited to hard real-time systems
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… by Determinism
● Deterministic scheduling of known, exactly pre-computed 

processes
– Process runtimes and deadlines are known, possibly calculated 

offline
– Exact prediction of CPU load is possible
– System guarantees and enforces process runtimes/deadlines
– Time guarantees are valid regardless of system load

● Probabilistic scheduling of unknown processes
– Process runtimes and deadlines are unknown
– (Probable) CPU load can only be estimated
– System cannot give and enforce time guarantees
– Timing guarantees conditionally achievable by application 

mechanisms
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… by Cooperation Behavior
● Cooperative scheduling of interdependent processes

– Processes must voluntarily yield the CPU in favor of other processes
– Program execution must (directly/indirectly) trigger system calls
– System calls must (directly/indirectly) activate the scheduler

● Preemptive scheduling of independent processes
– Processes are forcibly deprived of the CPU in favor of other 

processes
– Events can trigger preemption of the running process
– Event processing (directly/indirectly) activates the scheduler
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… by Computer Architecture
● Uni-processor scheduling 

in multiprogramming/processing systems
– Process execution only pseudo parallel

● Multi-processor scheduling 
in shared-memory systems
– Parallel process execution possible

● Each processor processes its local ready list
● All processors process one global ready list
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Multiprocessor CPU Scheduling
CPU

CPU

CPU

CPU

Process Process Process

common READY list

● Automatic load balancing
– No CPU runs empty

● Processes are not bound to particular CPUs
● Accesses to the READY list must be synchronized

– Spinlock
– Conflict probability grows with CPU count!
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Multiprocessor CPU Scheduling
CPU

CPU

CPU

CPU

Process Process Process

Process

Process Process

Process Process Process

one READY list per CPU

● Processes stay on one CPU
– Better cache utilization

● Less synchronization costs
● CPU can drain (empty list)

– Solution: On-demand load balancing (pull)
● When a READY list is empty

– By a load-balancer process (push)

Modern PC operating 
systems nowadays use 
separate READY lists.

Modern PC operating 
systems nowadays use 
separate READY lists.
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… by Decision-Making Level
● Long-term scheduling controls the degree of 

multiprogramming
– Admission for users and processes
– Hand over processes to medium- and short-term scheduling

● Medium-term scheduling as part of swapping
– Move processes back and forth between RAM and disk
– swapping: swap-out, swap-in

● Short-term scheduling schedules processes on the CPU(s)
– Event-driven scheduling: Interrupts, system calls, signals
– Blocking / preemption of the running process

[s – min]

[ms – s]

[μs – ms]
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Scheduling Criteria
● Response Time Minimizing the time from a system-service request until the response, 

while maximizing the number of interactive processes.
● Turnaround Time Minimizing the time between process submission and completion, 

i.e. the effective process runtime and all waiting times.
● Timeliness Start and/or termination of a process at fixed points in time.
● Determinism Deterministic execution of a process regardless of the current system 

load.
● Throughput Maximizing the number of completed processes per predefined time unit. 

A measure for the performed “work” in a system.
● CPU Utilization Maximizing the percentage of time the CPU executes processes, i.e. 

does useful work.
● Fairness Equal treatment of processes, and guarantee to schedule processes within 

certain time frames (no starvation).
● Priority Executing processes with the highest (statically/dynamically assigned) priority 

first.
● Load Balancing Uniform resource utilization, or prioritized execution of processes that 

rather seldomly allocate heavily utilized resources.
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Scheduling Criteria
● Response Time Minimizing the time from a system-service request until the response, 

while maximizing the number of interactive processes.
● Turnaround Time Minimizing the time between a process start and its termination, i.e. 

the effective process runtime and all waiting times.
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measure for the performed “work” in a system.
● CPU Utilization Maximizing the percentage of time the CPU executes processes, i.e. 

does useful work.
● Fairness Equal treatment of processes, and guarantee to schedule processes within 

certain time frames (no starvation).
● Priority Executing processes with the highest (statically/dynamically assigned) priority 

first.
● Load Balancing Uniform resource utilization, or priorized execution of processes that 

rather seldomly allocate heavily utilized resources.

User-oriented criteria
● perceived system behavior
● determine user acceptance

User-oriented criteria
● perceived system behavior
● determine user acceptance

System-oriented criteria
● efficient resource utilization
● determine computing costs

System-oriented criteria
● efficient resource utilization
● determine computing costs

influence



2024-06-04 OSC: L08 Scheduling 26

Operating Modes and Criteria
● in general

– Fairness
– Load balancing

● Batch systems
– Throughput
– Turnaround time
– CPU utilization

● Interactive systems
– Response time (Proportionality – Processing time corresponds to expectation)

● Real-time systems
– Priority
– Timeliness
– Determinism
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Processes and Threads in Windows
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Processes and Threads in Windows
● Process: Environment and address space for threads

– A Win32 process always contains at least one thread
– Thread: Code-executing entity

● Thread implementation by NT kernel
– User-mode threads possible (“fibers”), but unusual

● Scheduler assigns processing time to threads
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The Windows Scheduler
● Preemptive, priority-based scheduling: 

– High-priority thread preempts thread with lower priority
● Regardless whether thread currently in user or kernel mode
● Most functionality of the Executive (“kernel”) implemented as threads, 

too
– Round-Robin for threads with same priority

● Round-robin assignment of one time slice (“Quantum”)

● Thread priorities
– 0 to 31, subdivided in three ranges

● Variable Priorities: 1 to 15
● Real-time Priorities: 16 to 31
● Priority 0 is reserved for the Zero-Page Thread

– Threads of the Executive maximally use priority 23
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Time Slice (Quantum)
● Quantum is decreased

– by 3 at every clock tick (every 15 ms)

– by 1 if the thread voluntarily enters a waiting state

● Time-slice length: 20 – 180 ms

short Quantum values 
(Desktop)

long Quantum values 
(Server)

variable fixed variable fixed

Thread in 
backgr. 
process

6 18 12 36

Thread in 
FG process 6 12 18 18 12 24 36 36
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Priority Classes, Relative Thread Priority
Process Priority Class

Relative 
Thread Priority

Idle
Below 

Normal Normal
Above 

Normal High Realtime

4 6 8 10 13 24

Time Critical =15 15 15 15 15 15 31

Highest +2 6 8 10 12 15 26

Above Normal +1 5 7 9 11 14 25

Normal 4 6 8 10 13 24

Below Normal -1 3 5 7 9 12 23

Lowest -2 2 4 6 8 11 22

Idle =1 1 1 1 1 1 16
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Priorities: Variable Priorities
● Variable Priorities (1–15)

– Scheduler strategies to prioritize “important” threads
● Quantum Stretching (preference for the active GUI thread, cf. 2 slides back)

● Dynamic priority boost for a few time slices at events
– Progress guarantee

● Every 3 to 4 seconds, up to 10 “disadvantaged” threads are raised to 
priority 15 for two time slices

– Thread priority is calculated using this (simplified) formula:

Process priority class + Thread priority + Boost
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Priorities: Realtime Priorities
● Realtime Priorities (16–31)

– Pure priority-based Round-Robin
● No progress guarantee
● No dynamic boost
● Operating system itself can be negatively affected
● Special user privilege necessary (SeIncreaseBasePriorityPrivilege)

– Thread priority is calculated using this formula:

REALTIME_PRIORITY_CLASS + Thread priority
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Dynamic Priority Boosts
● Dynamic Boosts

– The system dynamically raises thread priorities in specific situations
(not for REALTIME_PRIORITY_CLASS)

● Disk input or output complete: +1
● Mouse, keyboard input:  +6
● Semaphore, Event, Mutex:    +1
● Other events (network, pipe, …) +2
● Event in the foreground application   +2

– Dynamic Boost gets “used up”
(one level per Quantum)
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Priority Change after a Boost

Priority

Base priority
active waiting active ready active

preempted
(before Quantum 

exhaustion)

Mouse message: 
Dynamic priority 

boost by 6

Quantum

ready
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The Balance-Set Manager
● About every 3–4 seconds, up to 10 “disadvantaged” threads are raised to 

priority 15 for two time slices

Progress
guarantee!
Progress
guarantee!
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Multiprocessor Scheduling
● Goal: “fair” Round-Robin at maximum throughput
● Problem: Cache effects
● Since Windows 8 / Windows Server 2012: “Ready queue” per 

priority level and CPU group (before: per CPU)
– Groups aligned to SMT-set/multicore package/NUMA information
– Ready summary: 32-bit bitmask to speed up finding the highest-

priority non-empty queue
– Guarantee: Each CPU group runs ≥1 highest-priority thread
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Multiprocessor Scheduling
● Threads can be restricted with CPU affinity

(mapping CPUs  thread)
– hard_affinity: Fixed mapping

 via → SetThreadAffinity()

– ideal_processor: “Ideal” mapping (NUMA: also ideal_node)
 assigned at creation time (“random”)→

 modifiable via → SetThreadIdealProcessor()

– soft_affinity: Previous CPU the thread ran on
 internally managed by the scheduler→

– last_run: Point in time the thread ran last
 internally managed by the scheduler→
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Multiprocessor Scheduling
● Algorithm: CPU n calls KiSelectNextThread()

– Use ready summary to pick highest-prioritized non-empty ready list of 
the CPU group this CPU belongs to

– Pick head of this ready list
– If ReadyQueue completely empty, activate Idle Loop
– In Idle-Loop: Search ReadyQueue of other CPU groups

(taking NUMA-node topology and other factors into account)

● more features:
– Heterogeneous scheduling

(Arm big.LITTLE, Intel Performance Hybrid Architecture)

– Dynamic Fair Share Scheduling (DFSS)
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Conclusion Windows
● “interactive, probabilistic, online, preemptive, multi-processor 

CPU scheduling”
● Priority model allows fine-grained CPU-time allocation

– Dynamic modifications
– User-mode threads with high real-time priorities take precedence 

over all system threads!
– Threads in the Executive are generally preemptible

● Continuous SMP/NUMA improvements since Windows 2003
● Heuristics to accommodate interactive users
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Linux Tasks ...
● are the Linux-Kernel abstraction for ...

– UNIX processes: one thread in one address space
– Linux Threads: special process that shares its virtual address space 

with at least one other thread
● are the activities considered by the scheduler

– Up to Linux 2.6.23 (introduction of CFS, the Completely Fair Scheduler) a program 
with many threads received more computation time than a single-
threaded process

● similarly a program with one process and many child processes
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Linux’ Modular Scheduler
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Scheduler Classes
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Linux’ Modular Scheduler
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Real-time Tasks
● SCHED_FIFO  never preempted
● SCHED_RR preempted when fixed time slice expires
● Real-time tasks preempt any other regular task.
● Due to the simple strategy, the behavior in a real-time environment 

can be very well predicted.

Real-time Tasks
● SCHED_FIFO  never preempted
● SCHED_RR preempted when fixed time slice expires
● Real-time tasks preempt any other regular task.
● Due to the simple strategy, the behavior in a real-time environment 

can be very well predicted.
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Linux’ Modular Scheduler
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Regular tasks: Completely Fair Scheduler (CFS)
● Geared to an idealized “multitasking processor”

● Infinitesimally tiny time slices
● Runtime of two same-priority tasks distributed equally

● Quantum is not derived directly from priority (nice value).
● Parameters instead: Aspired to and minimal latency; task’s relative weight; 

group or user affiliation

Regular tasks: Completely Fair Scheduler (CFS)
● Geared to an idealized “multitasking processor”

● Infinitesimally tiny time slices
● Runtime of two same-priority tasks distributed equally

● Quantum is not derived directly from priority (nice value).
● Parameters instead: Aspired to and minimal latency; task’s relative weight; 

group or user affiliation

Red-black Tree sorted by “virtual runtime”
● Pick task with smallest value:

O(1) thanks to “cache”; other operations O(log N)
● Depending on task priority and number of ready 

tasks, virtual runtime passes with different speeds.

Red-black Tree sorted by “virtual runtime”
● Pick task with smallest value:

O(1) thanks to “cache”; other operations O(log N)
● Depending on task priority and number of ready 

tasks, virtual runtime passes with different speeds.
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Multiprocessor Support
● Multiple READY lists

– Parallel scheduler execution possible
● Support for CPU affinity
● Takes “warm” caches into account
● CPU load balancing

– “push” by load-balancer process
 → spin-locking still necessary

– “pull” when a READY list runs empty
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Conclusion Linux
● “interactive, probabilistic, online, preemptive, multi-processor 

CPU scheduling“
● Modular architecture

– Arbitrary scheduler hierarchy possible
– Support for soft real-time applications

● CFS focuses on fairness
– Goal: Fair distribution of CPU-time shares

● Fairness not guaranteed if very many processes are ready
– Progress guarantee for all processes
– No arbitrary heuristics

● CFS solves many problems of classic UNIX schedulers
– CPU-time limits for users or groups
– Provides semantics for nice values (+1 corresponds to CPU share * 1.25)

● Modern multiprocessor support
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Summary
● Threads are operating-system coroutines

– OS has a preemption mechanism
● Scheduling has profound impact on system performance.

It determines …
– which process wait and which progress
– which resources are utilized how much

● There exist many variants of schedulers
– only little differences at mainstream PC/workstation OSs
– large differences in other application domains
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