
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Scheduling
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-06-04 OSC: L08 Scheduling 2

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Interrupt
handling

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

2024-06-04 OSC: L08 Scheduling 3

Interrupt
handling

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Inter-process
communication

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

Interrupt
synchronization

Control-flow
abstraction

Topic of today’s lectureTopic of today’s lecture

Process management

2024-06-04 OSC: L08 Scheduling 4

Agenda
● Kernel-Level Threads

– Motivation
– Cooperative Thread Switch
– Preemptive Thread Switch

● Scheduling
– Basic Terms and Classification
– in Windows (8–11)
– in Linux

● Summary

2024-06-04 OSC: L08 Scheduling 5

Agenda
● Kernel-Level Threads

– Motivation
– Cooperative Thread Switch
– Preemptive Thread Switch

● Scheduling
– Basic Terms and Classification
– in Windows (8–11)
– in Linux

● Summary

2024-06-04 OSC: L08 Scheduling 6

Kernel-Level Threads: Motivation
● Approach: Run applications “unnoticeably” as

independent threads
– One OS coroutine per application
– Application is activated by being called
– Coroutine switch: indirect by system call

● Advantages:
– Independent application development
– Central scheduler implementation
– An application waiting for I/O can be “blocked” by the OS and

“awakened” later
– Additional preemption mechanism can prevent CPU monopolization

2024-06-04 OSC: L08 Scheduling 7

Cooperative Thread Switch
O

pe
ra

tin
g

Sy
st

em
Ap

pl
ic

at
io

ns <app1>

<app2>

resum
e

up
ca

ll
ap

p1

Legend Control-flow creation:
 Control-flow destruction:

explicit (re-)activation:
 implicit (re-)activation:<schedule>

<resume>

<kickoff'>

<kickoff>
re

t

re
t

up
ca

ll
ap

p2

resum
e

re
t

resum
e

re
t

2024-06-04 OSC: L08 Scheduling 8

Cooperative Thread Switch
<app1>

<app2>

resum
e

up
ca

ll
ap

p1

Legend Control-flow creation:
 Control-flow destruction:

explicit (re-)activation:
 implicit (re-)activation:Operating-system primitives

● schedule (indirectly) starts the first
application thread, does not return

● resume switches from one application
thread to the next.

Both make a scheduling decision.

Operating-system primitives
● schedule (indirectly) starts the first

application thread, does not return
● resume switches from one application

thread to the next.
Both make a scheduling decision.

<schedule>

<resume>

<kickoff'>

<kickoff>
re

t

re
t

up
ca

ll
ap

p2

resum
e

re
t

resum
e

re
t

O
pe

ra
tin

g
Sy

st
em

Ap
pl

ic
at

io
ns

2024-06-04 OSC: L08 Scheduling 9

Cooperative Thread Switch
<app1>

<app2>

resum
e

up
ca

ll
ap

p1

Legend Control-flow creation:
 Control-flow destruction:

explicit (re-)activation:
 implicit (re-)activation:<schedule>

<resume>

<kickoff'>

<kickoff>
re

t

re
t

up
ca

ll
ap

p2

resum
e

re
t

resum
e

re
t

The kickoff coroutine
● runs once for each application thread
● activates the respective application

through an upcall

The kickoff coroutine
● runs once for each application thread
● activates the respective application

through an upcall

O
pe

ra
tin

g
Sy

st
em

Ap
pl

ic
at

io
ns

2024-06-04 OSC: L08 Scheduling 10

Cooperative Thread Switch
<app1>

<app2>

resum
e

up
ca

ll
ap

p1

Legend Control-flow creation:
 Control-flow destruction:

explicit (re-)activation:
 implicit (re-)activation:<schedule>

<resume>

<kickoff'>

<kickoff>
re

t

re
t

up
ca

ll
ap

p2

resum
e

re
t

resum
e

re
t

resume system calls
● the mechanism for applications to yield

the CPU voluntarily
● possibly combined with a CPU mode

switch (in this case we additionally need a wrapper)

resume system calls
● the mechanism for applications to yield

the CPU voluntarily
● possibly combined with a CPU mode

switch (in this case we additionally need a wrapper)

O
pe

ra
tin

g
Sy

st
em

Ap
pl

ic
at

io
ns

2024-06-04 OSC: L08 Scheduling 11

Preemptive Thread Switch
● Forced CPU removal via timer interrupt

– the interrupt is “just” an implicit call
– handler routine can call resume

Careful: In general it does not work this way, because resume
makes a scheduling decision. We need to apply interrupt
synchronization for the involved data structures!

Careful: In general it does not work this way, because resume
makes a scheduling decision. We need to apply interrupt
synchronization for the involved data structures!

<app1>

<app2>
r e

su
m

e

<handler>

<resume>

re
t

resum
e

ret

sti()

ire
t

O
pe

ra
tin

g
Sy

st
em

Ap
pl

ic
at

io
ns

2024-06-04 OSC: L08 Scheduling 12

Thread Switch in the Epilogue
● Implementation

– Scheduler data (list of ready threads) reside on the epilogue level
– All system functions that manipulate these data

must acquire the epilogue lock before (enter/leave)
● Create thread, terminate thread, voluntary thread switch, …

● Basic rule for thread switches:
– the yielding thread requests the lock

(e.g. implicitly in interrupt handling)

– the activated thread must release the lock
● Tips:

– Never call enter from the epilogue (double request)
– Basic rule (see above) also holds for the first thread activation(!)

More on that in the exercises.More on that in the exercises.

2024-06-04 OSC: L08 Scheduling 13

Agenda
● Kernel-Level Threads

– Motivation
– Cooperative Thread Switch
– Preemptive Thread Switch

● Scheduling
– Basic Terms and Classification
– in Windows (8–11)
– in Linux

● Summary

2024-06-04 OSC: L08 Scheduling 14

Scheduling: Classification by …
● Resource type of the scheduled hardware resource

● Operation mode of the controlled computer system

● Point in time when the schedule is determined

● Determinism of timing and duration of process runs

● Cooperation behavior of (user/system) programs

● Computer architecture of the system

● Decision-making level when scheduling resources

2024-06-04 OSC: L08 Scheduling 15

● CPU scheduling of the resource “CPU”
– Process count at times higher than CPU count
– CPU(s) must be multiplexed for several processes
– Admission via waiting queue

● I/O scheduling of the resource “device”, particularly “disk”
– Device-specific scheduling of I/O jobs generated by processes
– e.g., disk scheduling usually takes into account these factors:

● (1) Positioning time, (2) rotation time, (3) transfer time
– Device parameters and device state determine the next I/O operation
– Scheduling decisions possibly not conforming to CPU scheduling

… by Resource Type

2024-06-04 OSC: L08 Scheduling 16

… by Mode of Operation
● Batch scheduling of interaction-less programs

– non-preemptive scheduling
(or preemptive scheduling with long time slices)

– Context-switch count minimization
● Interactive scheduling of interactive programs

– Event-driven, preemptive scheduling with short time slices
– Partly response-time minimization by heuristics

● Real-time scheduling of time-critical programs
– Event- or time-driven deterministic scheduling
– Guarantee of keeping environment-specific deadlines
– Focus: Timeliness, not performance

2024-06-04 OSC: L08 Scheduling 17

… by Point in Time
● Online scheduling dynamic, during actual program

execution
– Interactive and batch systems, but also soft real-time systems

● Offline scheduling static, before actual program execution
– If complexity prohibits scheduling at runtime

● Guarantee keeping all deadlines: NP-hard
● Critical if we must react to any preventable catastrophic situation

– Result: Complete schedule (in tabular form)

● (Half) automatically generated via source-code analysis of a specialized
“compiler”

● Often executed by a time-triggered scheduler
– Usually limited to hard real-time systems

2024-06-04 OSC: L08 Scheduling 18

… by Determinism
● Deterministic scheduling of known, exactly pre-computed

processes
– Process runtimes and deadlines are known, possibly calculated

offline
– Exact prediction of CPU load is possible
– System guarantees and enforces process runtimes/deadlines
– Time guarantees are valid regardless of system load

● Probabilistic scheduling of unknown processes
– Process runtimes and deadlines are unknown
– (Probable) CPU load can only be estimated
– System cannot give and enforce time guarantees
– Timing guarantees conditionally achievable by application

mechanisms

2024-06-04 OSC: L08 Scheduling 19

… by Cooperation Behavior
● Cooperative scheduling of interdependent processes

– Processes must voluntarily yield the CPU in favor of other processes
– Program execution must (directly/indirectly) trigger system calls
– System calls must (directly/indirectly) activate the scheduler

● Preemptive scheduling of independent processes
– Processes are forcibly deprived of the CPU in favor of other

processes
– Events can trigger preemption of the running process
– Event processing (directly/indirectly) activates the scheduler

2024-06-04 OSC: L08 Scheduling 20

… by Computer Architecture
● Uni-processor scheduling

in multiprogramming/processing systems
– Process execution only pseudo parallel

● Multi-processor scheduling
in shared-memory systems
– Parallel process execution possible

● Each processor processes its local ready list
● All processors process one global ready list

CPU

CPU

CPU

CPU

Process Process

CPU

CPU

CPU

CPU

Process Process

Process

Process Process

Process Process

or

2024-06-04 OSC: L08 Scheduling 21

Multiprocessor CPU Scheduling
CPU

CPU

CPU

CPU

Process Process Process

common READY list

● Automatic load balancing
– No CPU runs empty

● Processes are not bound to particular CPUs
● Accesses to the READY list must be synchronized

– Spinlock
– Conflict probability grows with CPU count!

2024-06-04 OSC: L08 Scheduling 22

Multiprocessor CPU Scheduling
CPU

CPU

CPU

CPU

Process Process Process

Process

Process Process

Process Process Process

one READY list per CPU

● Processes stay on one CPU
– Better cache utilization

● Less synchronization costs
● CPU can drain (empty list)

– Solution: On-demand load balancing (pull)
● When a READY list is empty

– By a load-balancer process (push)

Modern PC operating
systems nowadays use
separate READY lists.

Modern PC operating
systems nowadays use
separate READY lists.

2024-06-04 OSC: L08 Scheduling 23

… by Decision-Making Level
● Long-term scheduling controls the degree of

multiprogramming
– Admission for users and processes
– Hand over processes to medium- and short-term scheduling

● Medium-term scheduling as part of swapping
– Move processes back and forth between RAM and disk
– swapping: swap-out, swap-in

● Short-term scheduling schedules processes on the CPU(s)
– Event-driven scheduling: Interrupts, system calls, signals
– Blocking / preemption of the running process

[s – min]

[ms – s]

[μs – ms]

2024-06-04 OSC: L08 Scheduling 24

Scheduling Criteria
● Response Time Minimizing the time from a system-service request until the response,

while maximizing the number of interactive processes.
● Turnaround Time Minimizing the time between process submission and completion,

i.e. the effective process runtime and all waiting times.
● Timeliness Start and/or termination of a process at fixed points in time.
● Determinism Deterministic execution of a process regardless of the current system

load.
● Throughput Maximizing the number of completed processes per predefined time unit.

A measure for the performed “work” in a system.
● CPU Utilization Maximizing the percentage of time the CPU executes processes, i.e.

does useful work.
● Fairness Equal treatment of processes, and guarantee to schedule processes within

certain time frames (no starvation).
● Priority Executing processes with the highest (statically/dynamically assigned) priority

first.
● Load Balancing Uniform resource utilization, or prioritized execution of processes that

rather seldomly allocate heavily utilized resources.

2024-06-04 OSC: L08 Scheduling 25

Scheduling Criteria
● Response Time Minimizing the time from a system-service request until the response,

while maximizing the number of interactive processes.
● Turnaround Time Minimizing the time between a process start and its termination, i.e.

the effective process runtime and all waiting times.
● Timeliness Start and/or termination of a process at fixed points in time.
● Determinism Deterministic execution of a process regardless of the current system

load.
● Throughput Maximizing the number of completed processes per predefined time unit. A

measure for the performed “work” in a system.
● CPU Utilization Maximizing the percentage of time the CPU executes processes, i.e.

does useful work.
● Fairness Equal treatment of processes, and guarantee to schedule processes within

certain time frames (no starvation).
● Priority Executing processes with the highest (statically/dynamically assigned) priority

first.
● Load Balancing Uniform resource utilization, or priorized execution of processes that

rather seldomly allocate heavily utilized resources.

User-oriented criteria
● perceived system behavior
● determine user acceptance

User-oriented criteria
● perceived system behavior
● determine user acceptance

System-oriented criteria
● efficient resource utilization
● determine computing costs

System-oriented criteria
● efficient resource utilization
● determine computing costs

influence

2024-06-04 OSC: L08 Scheduling 26

Operating Modes and Criteria
● in general

– Fairness
– Load balancing

● Batch systems
– Throughput
– Turnaround time
– CPU utilization

● Interactive systems
– Response time (Proportionality – Processing time corresponds to expectation)

● Real-time systems
– Priority
– Timeliness
– Determinism

2024-06-04 OSC: L08 Scheduling 27

Agenda
● Kernel-Level Threads

– Motivation
– Cooperative Thread Switch
– Preemptive Thread Switch

● Scheduling
– Basic Terms and Classification
– in Windows (8–11)
– in Linux

● Summary

2024-06-04 OSC: L08 Scheduling 28

Processes and Threads in Windows

Code

Global and
static data

Stack +
Register file
(1 per thread)

Process

Stack T1

Registers T1

Stack T2

Registers T2

Stack T3

Registers T3

Stack T4

Registers T4

Data accesses

2024-06-04 OSC: L08 Scheduling 29

Processes and Threads in Windows
● Process: Environment and address space for threads

– A Win32 process always contains at least one thread
– Thread: Code-executing entity

● Thread implementation by NT kernel
– User-mode threads possible (“fibers”), but unusual

● Scheduler assigns processing time to threads

2024-06-04 OSC: L08 Scheduling 30

The Windows Scheduler
● Preemptive, priority-based scheduling:

– High-priority thread preempts thread with lower priority
● Regardless whether thread currently in user or kernel mode
● Most functionality of the Executive (“kernel”) implemented as threads,

too
– Round-Robin for threads with same priority

● Round-robin assignment of one time slice (“Quantum”)

● Thread priorities
– 0 to 31, subdivided in three ranges

● Variable Priorities: 1 to 15
● Real-time Priorities: 16 to 31
● Priority 0 is reserved for the Zero-Page Thread

– Threads of the Executive maximally use priority 23

2024-06-04 OSC: L08 Scheduling 31

Time Slice (Quantum)
● Quantum is decreased

– by 3 at every clock tick (every 15 ms)

– by 1 if the thread voluntarily enters a waiting state

● Time-slice length: 20 – 180 ms

short Quantum values
(Desktop)

long Quantum values
(Server)

variable fixed variable fixed

Thread in
backgr.
process

6 18 12 36

Thread in
FG process 6 12 18 18 12 24 36 36

2024-06-04 OSC: L08 Scheduling 32

Priority Classes, Relative Thread Priority
Process Priority Class

Relative
Thread Priority

Idle
Below

Normal Normal
Above

Normal High Realtime

4 6 8 10 13 24

Time Critical =15 15 15 15 15 15 31

Highest +2 6 8 10 12 15 26

Above Normal +1 5 7 9 11 14 25

Normal 4 6 8 10 13 24

Below Normal -1 3 5 7 9 12 23

Lowest -2 2 4 6 8 11 22

Idle =1 1 1 1 1 1 16

2024-06-04 OSC: L08 Scheduling 33

Priorities: Variable Priorities
● Variable Priorities (1–15)

– Scheduler strategies to prioritize “important” threads
● Quantum Stretching (preference for the active GUI thread, cf. 2 slides back)

● Dynamic priority boost for a few time slices at events
– Progress guarantee

● Every 3 to 4 seconds, up to 10 “disadvantaged” threads are raised to
priority 15 for two time slices

– Thread priority is calculated using this (simplified) formula:

Process priority class + Thread priority + Boost

2024-06-04 OSC: L08 Scheduling 34

Priorities: Realtime Priorities
● Realtime Priorities (16–31)

– Pure priority-based Round-Robin
● No progress guarantee
● No dynamic boost
● Operating system itself can be negatively affected
● Special user privilege necessary (SeIncreaseBasePriorityPrivilege)

– Thread priority is calculated using this formula:

REALTIME_PRIORITY_CLASS + Thread priority

2024-06-04 OSC: L08 Scheduling 35

Dynamic Priority Boosts
● Dynamic Boosts

– The system dynamically raises thread priorities in specific situations
(not for REALTIME_PRIORITY_CLASS)

● Disk input or output complete: +1
● Mouse, keyboard input: +6
● Semaphore, Event, Mutex: +1
● Other events (network, pipe, …) +2
● Event in the foreground application +2

– Dynamic Boost gets “used up”
(one level per Quantum)

2024-06-04 OSC: L08 Scheduling 36

Priority Change after a Boost

Priority

Base priority
active waiting active ready active

preempted
(before Quantum

exhaustion)

Mouse message:
Dynamic priority

boost by 6

Quantum

ready

2024-06-04 OSC: L08 Scheduling 37

The Balance-Set Manager
● About every 3–4 seconds, up to 10 “disadvantaged” threads are raised to

priority 15 for two time slices

Progress
guarantee!
Progress
guarantee!

2024-06-04 OSC: L08 Scheduling 38

Multiprocessor Scheduling
● Goal: “fair” Round-Robin at maximum throughput
● Problem: Cache effects
● Since Windows 8 / Windows Server 2012: “Ready queue” per

priority level and CPU group (before: per CPU)
– Groups aligned to SMT-set/multicore package/NUMA information
– Ready summary: 32-bit bitmask to speed up finding the highest-

priority non-empty queue
– Guarantee: Each CPU group runs ≥1 highest-priority thread

2024-06-04 OSC: L08 Scheduling 39

Multiprocessor Scheduling
● Threads can be restricted with CPU affinity

(mapping CPUs thread)
– hard_affinity: Fixed mapping

 via → SetThreadAffinity()

– ideal_processor: “Ideal” mapping (NUMA: also ideal_node)
 assigned at creation time (“random”)→

 modifiable via → SetThreadIdealProcessor()

– soft_affinity: Previous CPU the thread ran on
 internally managed by the scheduler→

– last_run: Point in time the thread ran last
 internally managed by the scheduler→

2024-06-04 OSC: L08 Scheduling 40

Multiprocessor Scheduling
● Algorithm: CPU n calls KiSelectNextThread()

– Use ready summary to pick highest-prioritized non-empty ready list of
the CPU group this CPU belongs to

– Pick head of this ready list
– If ReadyQueue completely empty, activate Idle Loop
– In Idle-Loop: Search ReadyQueue of other CPU groups

(taking NUMA-node topology and other factors into account)

● more features:
– Heterogeneous scheduling

(Arm big.LITTLE, Intel Performance Hybrid Architecture)

– Dynamic Fair Share Scheduling (DFSS)

2024-06-04 OSC: L08 Scheduling 41

Conclusion Windows
● “interactive, probabilistic, online, preemptive, multi-processor

CPU scheduling”
● Priority model allows fine-grained CPU-time allocation

– Dynamic modifications
– User-mode threads with high real-time priorities take precedence

over all system threads!
– Threads in the Executive are generally preemptible

● Continuous SMP/NUMA improvements since Windows 2003
● Heuristics to accommodate interactive users

2024-06-04 OSC: L08 Scheduling 42

Agenda
● Kernel-Level Threads

– Motivation
– Cooperative Thread Switch
– Preemptive Thread Switch

● Scheduling
– Basic Terms and Classification
– in Windows (8–11)
– in Linux

● Summary

2024-06-04 OSC: L08 Scheduling 43

Linux Tasks ...
● are the Linux-Kernel abstraction for ...

– UNIX processes: one thread in one address space
– Linux Threads: special process that shares its virtual address space

with at least one other thread
● are the activities considered by the scheduler

– Up to Linux 2.6.23 (introduction of CFS, the Completely Fair Scheduler) a program
with many threads received more computation time than a single-
threaded process

● similarly a program with one process and many child processes

2024-06-04 OSC: L08 Scheduling 44

Linux’ Modular Scheduler

sched_rt

List headList head

List headList head

List headList head

List headList head

Priority (0 = high, 139 = low)

0

1

2

99

...

TaskTask

TaskTaskTaskTask TaskTask

TaskTaskTaskTask

Processing

Processing

sched_fair

100
...

139
27

7 65
19 34

25 31
2 49 98

TaskTask TaskTask TaskTask

virtual runtime

sched_rt and
sched_fair are
Scheduler Classes

sched_rt and
sched_fair are
Scheduler Classes

2024-06-04 OSC: L08 Scheduling 45

Linux’ Modular Scheduler

sched_rt

List headList head

List headList head

List headList head

List headList head

Priority (0 = high, 139 = low)

0

1

2

99

...

TaskTask

TaskTaskTaskTask TaskTask

TaskTaskTaskTask

Processing

Abarbeitung

sched_fair

100
...

139
27

7 65
19 34

25 31
2 49 98

TaskTask TaskTask TaskTask

virtual runtime

Real-time Tasks
● SCHED_FIFO never preempted
● SCHED_RR preempted when fixed time slice expires
● Real-time tasks preempt any other regular task.
● Due to the simple strategy, the behavior in a real-time environment

can be very well predicted.

Real-time Tasks
● SCHED_FIFO never preempted
● SCHED_RR preempted when fixed time slice expires
● Real-time tasks preempt any other regular task.
● Due to the simple strategy, the behavior in a real-time environment

can be very well predicted.

2024-06-04 OSC: L08 Scheduling 46

Linux’ Modular Scheduler

sched_rt

List-HeadList-Head

List-HeadList-Head

List-HeadList-Head

List-HeadList-Head

Priorität (0 ist hoch, 139 niedrig)

0

1

2

99

...

TaskTask

TaskTaskTaskTask TaskTask

TaskTaskTaskTask

Processing

Processing

sched_fair

100
...

139
27

7 65
19 34

25 31
2 49 98

TaskTask TaskTask TaskTask

virtual runtime

Regular tasks: Completely Fair Scheduler (CFS)
● Geared to an idealized “multitasking processor”

● Infinitesimally tiny time slices
● Runtime of two same-priority tasks distributed equally

● Quantum is not derived directly from priority (nice value).
● Parameters instead: Aspired to and minimal latency; task’s relative weight;

group or user affiliation

Regular tasks: Completely Fair Scheduler (CFS)
● Geared to an idealized “multitasking processor”

● Infinitesimally tiny time slices
● Runtime of two same-priority tasks distributed equally

● Quantum is not derived directly from priority (nice value).
● Parameters instead: Aspired to and minimal latency; task’s relative weight;

group or user affiliation

Red-black Tree sorted by “virtual runtime”
● Pick task with smallest value:

O(1) thanks to “cache”; other operations O(log N)
● Depending on task priority and number of ready

tasks, virtual runtime passes with different speeds.

Red-black Tree sorted by “virtual runtime”
● Pick task with smallest value:

O(1) thanks to “cache”; other operations O(log N)
● Depending on task priority and number of ready

tasks, virtual runtime passes with different speeds.

2024-06-04 OSC: L08 Scheduling 47

Multiprocessor Support
● Multiple READY lists

– Parallel scheduler execution possible
● Support for CPU affinity
● Takes “warm” caches into account
● CPU load balancing

– “push” by load-balancer process
 → spin-locking still necessary

– “pull” when a READY list runs empty

2024-06-04 OSC: L08 Scheduling 48

Conclusion Linux
● “interactive, probabilistic, online, preemptive, multi-processor

CPU scheduling“
● Modular architecture

– Arbitrary scheduler hierarchy possible
– Support for soft real-time applications

● CFS focuses on fairness
– Goal: Fair distribution of CPU-time shares

● Fairness not guaranteed if very many processes are ready
– Progress guarantee for all processes
– No arbitrary heuristics

● CFS solves many problems of classic UNIX schedulers
– CPU-time limits for users or groups
– Provides semantics for nice values (+1 corresponds to CPU share * 1.25)

● Modern multiprocessor support

2024-06-04 OSC: L08 Scheduling 49

Agenda
● Kernel-Level Threads

– Motivation
– Cooperative Thread Switch
– Preemptive Thread Switch

● Scheduling
– Basic Terms and Classification
– in Windows (8–11)
– in Linux

● Summary

2024-06-04 OSC: L08 Scheduling 50

Summary
● Threads are operating-system coroutines

– OS has a preemption mechanism
● Scheduling has profound impact on system performance.

It determines …
– which process wait and which progress
– which resources are utilized how much

● There exist many variants of schedulers
– only little differences at mainstream PC/workstation OSs
– large differences in other application domains

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Ausführungspfade (Threads) in einem Prozess
	Prozesse und Threads: Zusammenfassung
	Grundlegende Eigenschaften des Schedulers
	Slide 31
	Prioritätsklassen und relative Threadpriorität
	Prioritäten: Variable Priorities
	Prioritäten: Realtime Priorities
	Dynamische Prioritätsanpassung
	Slide 36
	Anhebung der Priorität durch Balance-Set-Manager
	Änderungen in Windows 2003
	Slide 39
	Slide 40
	Fazit
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

