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Motivation: Scenario
● Given: Threads <f> and <g>

– Preemptive round-robin scheduling
– Both access a shared buffer buf

void f() {
  ...
  char el;
  el = buf.consume();
  ...
}

void g() {
  ...
  char el = ...
  buf.produce( el );
  ...
}

#include "BoundedBuffer.h"

extern BoundedBuffer buf;
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Motivation: Consistency Issues

char BoundedBuffer::consume() {
  int elements = occupied;
  if (elements == 0) return 0;
  char result = buf[nextout]; 
  nextout++; nextout %= SIZE;

  

  occupied = elements – 1;
  return result;
}

...
void BoundedBuffer::produce(char data) {
  int elements = occupied;
  if (elements == SIZE) return;
  buf[nextin] = data;
  nextin++; nextin %= SIZE;
  occupied = elements + 1;
}
...

● Given: Threads <f> and <g>
– Problem: Buffer accesses can overlap

 resume

 resume
We’ve seen this 
before …
We’ve seen this 
before …
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L05: Interrupt Synchronization

What is different 
this time?
What is different 
this time?
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First Conclusion
● Before: Synchronization of accesses by control flows

from different levels
– State was logically assigned to one specific level
– Synchronization either “from above” (hard) 

or “from below” (non-blocking)
– Implicit sequentialization within the same level

● Now: Synchronization of accesses by control flows
from the same level

– Threads can be preempted by other threads at any time.

That’s the point of threads!That’s the point of threads!
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● Control flows on Lf are
– interrupted anytime by control flows on Lg      (for f < g)

– never interrupted by control flows on Le      (for e ≤ f)

– sequentialized with other control flows on Lf

● Control flows can switch levels
– by special operations (here: modifying the status register)

Control-Flow Level Model: so far

L2
(not interruptible)
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(interruptible by L2)
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By supporting preemptive threads we cannot sustain this 
assumption any longer!
● No run-to-completion semantics anymore
● State accesses (from the same level) are not implicitly 

sequentialized anymore
● True for all levels that allow preemption of control flows; usually 

this is the application level L0
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● Control flows on Lf are
– interrupted anytime by control flows on Lg      (for f < g)

– never interrupted by control flows on Le      (for e ≤ f)

– sequentialized with other control flows on Lf (for f > 0)

– preempted by other control flows on Lf (for f = 0)

Control-Flow Level Model: new

L2  Interrupt level→
(not interruptible, not preemptible)

L1  Epilogue level→
(interruptible, not preemptible)

L0  Thread level→
(interruptible, preemptible)

Control flows on level L0 (thread 
level) are preemptible.

To maintain consistency on this 
level, we need additional 
mechanisms for thread 
synchronization.

Control flows on level L0 (thread 
level) are preemptible.

To maintain consistency on this 
level, we need additional 
mechanisms for thread 
synchronization.



2024-06-18 OSC: L09 Thread Synchronization 14

Thread Synchronization: Assumptions
● Threads can be preempted unpredictably

– at any time (also by external events)
● interrupts

– by any other thread
● of higher, same or lower priority (progress guarantee!)

● Typical assumptions for desktop computers
– probabilistic, interactive, preemptive, online CPU scheduling
– We do not consider other scheduling variants here.

Primarily, progress guarantee is causing the trouble here.
 

In purely priority-driven systems with sequential thread processing within one priority level, we 
can simply extend the interrupt-handling control-flow level model to thread priorities, and 
synchronize with comparable mechanisms (explicit level switch, algorithmic).
(  event-driven real-time systems)→

Primarily, progress guarantee is causing the trouble here.
 

In purely priority-driven systems with sequential thread processing within one priority level, we 
can simply extend the interrupt-handling control-flow level model to thread priorities, and 
synchronize with comparable mechanisms (explicit level switch, algorithmic).
(  event-driven real-time systems)→
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Thread Synchronization: Overview
● Goal (for the user):

Coordination of resource accesses
– Coordinating exclusive access to reusable resources  → Mutex
– Interacting with / coordinating consumable resources  → Semaphore

● Implementation approach (for the OS developer):
Coordination of CPU allocation of threads

– Particular threads are not scheduled temporarily.
 “Waiting” as an OS concept→

In the following, we focus on the OS 
developer’s perspective.
In the following, we focus on the OS 
developer’s perspective.
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Mutex – Mutual Exclusion
● In general:

An algorithm for enforcing mutual exclusion in a critical section

● Here:
A system abstraction class Mutex

● Interface:
– void Mutex::lock()

● Enter and lock the critical section
● Thread can block

– void Mutex::unlock()
● Leave and unlock the critical section

● Correctness condition: 0 ≤ ∑exe c lock() – ∑exe cunlock() ≤ 1
– At every point in time, there is at maximum one thread in the critical 

section.
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Mutex: Usage

void f() {
  ...
  char el;
  mutex.lock();
  el = buf.consume();
  mutex.unlock();
  ...
}

void g() {
  ...
  char el = ...
  mutex.lock();
  buf.produce( el );
  mutex.unlock();
  ...
}

#include "BoundedBuffer.h"
#include "Mutex.h"
extern BoundedBuffer buf;
extern Mutex mutex;
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Mutex: with Busy Waiting

// __atomic_test_and_set is a gcc builtin for
// (CPU specific) test-and-set
class SpinningMutex {
  char locked;
public:
  SpinningMutex() : locked (0) {}
  void lock(){
    while (__atomic_test_and_set(
           &locked, __ATOMIC_RELAXED))
      ;
  }
  void unlock() {
    locked = 0;
  } 
};

lock:
    mov    $1,%dl
L2: mov    %edx,%eax
    xchg   %al,(%rdi)
    test   %al,%al
    jne    L2
    ret    

unlock:
    movb   $0, (%rdi)
    ret

● Implemented purely at user level; approach:
– store state in boolean variable (0=free, 1=locked)
– wait busily in lock() until variable is 0
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Assessment: Mutex with Busy Waiting
● Advantages

– Maintains consistency, satisfies correctness condition
● under the assumption of progress guarantee for all threads

– Synchronization without involving the OS
● No system calls necessary

● Disadvantages
– Busy waiting wastes a lot of CPU time

● at least until the time slice is used up
● quite significant for time slices of 10–800ms!
● Scheduler may “penalize” thread

Busy Waiting is, if at all, only an alternative on 
multiprocessor machines.
Busy Waiting is, if at all, only an alternative on 
multiprocessor machines.
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Mutex: with “Hard Synchronization”
● Implementation with “hard thread synchronization”

– Approach:
● Deactivate multitasking before entering the critical section
● Reactivate multitasking after leaving the critical section

– Necessitates a way to disable preemption
● Special operations: forbid(), permit()

class HardMutex {
public:
  void lock(){
    forbid(); // disable multitasking
  }
  void unlock(){
    permit(); // enable multitasking
  } 
};
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Mutex: with “Hard Synchronization”
● Implementation of forbid() and permit()

– e.g. in the scheduler
● special, non-preemptible “real-time priority”
● own priority level L¼ for the scheduler
● resume() simply switches back to the caller

● or simply on epilogue level
– Context switching usually resides on epilogue level

● Epilogue-level control flows are sequentialized
● As long as a thread is on epilogue level, it cannot

be preempted
– Consequence: Sequentialization also with epilogues!

void forbid(){
  enter();
}
void permit(){
  leave();
}
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Assessment: Mutex with “Hard Synchronization”

● Advantages
– Maintains consistency, satisfies correctness condition
– Simple to implement

● Disadvantages
– Broadband effect

● Across-the-board delay of all threads (and potentially even epilogues!)

– Priority violation
● We delay control flows with higher priority.

– Pessimistic
● We put up with the disadvantages, although the collision probability is 

very low.
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Assessment: Mutex with “Hard Synchronization”

● Advantages
– Maintains consistency, satisfies correctness condition
– Simple to implement

● Disadvantages
– Broadband effect

● Across-the-board delay of all threads (and potentially even epilogues!)

– Priority violation
● We delay control flows with higher priority.

– Pessimistic
● We put up with the disadvantages, although the collision probability is 

very low.

Thread synchronization on epilogue level has many 
disadvantages. It is, however, appropriate for very short, 
seldomly entered critical sections – or if we need to 
synchronize with epilogues anyways.
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Passive Waiting
● Previously shown Mutex implementations are not ideal

– Mutex with busy waiting: wastes CPU time
– Mutex with hard synchronization: coarse-grained, violating priorities

● Better approach: Exclude thread from CPU scheduling as long as 
the mutex is locked

● Necessitates new OS concept: passive waiting
– Threads can “wait passively” for an event

● Wait passively  be excluded from CPU scheduling→

● New thread state: waiting (for an event)
– Occurrence of an event triggers leaving the waiting state

● Thread is included in CPU scheduling
● Thread state: ready



2024-06-18 OSC: L09 Thread Synchronization 27

Scheduler

waiting<w>waiting<w>waiting<w>

OS Concept: Passive Waiting
● Necessary abstractions:

– Scheduler operations: block(), wakeup()
– Synchronization object: Waitingroom

● represents the event to wait for
● usually a waiting queue of waiting threads

active ready

resume()

resume()

waiting<w>

block(w)           wakeup()

explicit transition

implicit transition



2024-06-18 OSC: L09 Thread Synchronization 28

OS Concept: Passive Waiting
● Scheduler operations

– block(Waitingroom& w)
● enqueue active thread (caller) in queue of synchronization object w
● activate another thread (from ready list)

– wakeup(Customer& t)
● enqueue t in ready list

● Waitingroom operations
– enqueue(Customer*)
– Customer* dequeue()

It makes sense to manage the queue with 
the same prioritization strategy as the 
scheduler’s ready list!

It makes sense to manage the queue with 
the same prioritization strategy as the 
scheduler’s ready list!
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Mutex: with Passive Waiting

class WaitingMutex : public Waitingroom {
  char locked;
public:
  WaitingMutex() : locked(0) {}
  void lock() {
    while (__atomic_test_and_set(&locked, __ATOMIC_RELAXED))
      scheduler.block(*this);
  }
  void unlock() {
    locked = 0;
    // fetch possibly waiting thread and wake it up
    Customer *t = dequeue();
    if (t)
      scheduler.wakeup(*t);
  }
}; This solution still has one 

remaining problem ...
This solution still has one 
remaining problem ...
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Mutex: with Passive Waiting
class WaitingMutex : public Waitingroom {
  char volatile locked;
public:
  WaitingMutex() : locked(0) {}
  void lock() {
    mutex.lock();
    while (locked == 1)
      scheduler.block(*this);
    locked = 1;
    mutex.unlock();
  }
  void unlock() {
    mutex.lock();
    locked = 0;
    // fetch possibly waiting thread and wake it up
    Customer *t = dequeue();
    if (t) scheduler.wakeup(*t);
    mutex.unlock();
  }
};

lock() and unlock() 
are critical sections 
themselves

lock() and unlock() 
are critical sections 
themselves

Can we protect these 
critical sections with a 
Mutex?

Can we protect these 
critical sections with a 
Mutex?
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Mutex: with Passive Waiting
class WaitingMutex : public Waitingroom {
  char volatile locked;
public:
  WaitingMutex() : locked(0) {}
  void lock() {
    enter();
    while (locked == 1)
      scheduler.block(*this);
    locked = 1;
    leave();
  }
  void unlock() {
    enter();
    locked = 0;
    // fetch possibly waiting thread and wake it up
    Customer *t = dequeue();
    if (t) scheduler.wakeup(*t);
    leave();
  }
};

It works with a HardMutex!

The common solution is indeed 
to protect lock() and 
unlock() on the epilogue 
level, as shown here.

It works with a HardMutex!

The common solution is indeed 
to protect lock() and 
unlock() on the epilogue 
level, as shown here.
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● Mutex state resides in the kernel on epilogue level
– more precisely: on the same level as the scheduler state

● This is a generic principle
– Implementation of synchronization mechanisms for L0 control flows is 

synchronized on L½

L1  Interrupt level→
(not interruptible, not preemptible)

L½  Epilogue level→
(interruptible, not preemptible)

L0  Thread level→
(interruptible, preemptible)

Conclusion: Implementing Waiting

buf[]

mutex scheduler ...

m
u
t
e
x
.
l
o
c
k
(
)

m
u
t
e
x
.
u
n
l
o
c
k
(
)buf.produce()



2024-06-18 OSC: L09 Thread Synchronization 33

Semaphore
● Semaphore is the classic synchronization object

– Edsger W. Dijkstra, 1962 [2]
– in many OSs: Basis for all other synchronization objects
– for us: semaphore := synchronization object + counter

● Operations
– 2 standard operations (with various names [2,3,5])

– prolaag(), P(), wait(), down(), acquire(), pend()
● if counter > 0, decrease counter
● if counter ≤ 0, wait until counter > 0 and retry

– verhoog(), V(), signal(), up(), release(), post()
● increase counter
● if counter = 1, wake up possibly waiting thread

● Many variants Implementation of the standard 
variant in the exercises.
Implementation of the standard 
variant in the exercises.
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Semaphore: Usage
● Semaphore semantics are particularly suitable for 

implementing producer/consumer scenarios
– i.e. coordinated access to consumable resources

● Characters from the keyboard
● Signals that are supposed to be processed further on thread level
● …

– Internal counter represents the resource count
● Producer calls V() for each produced element.
● Consumer calls P() to consume an element, possibly waits.

P() can block on thread level, V() never blocks! 
 

Hence, a control flow on epilogue or interrupt level can also be a 
producer (assuming appropriate synchronization of the internal semaphore state.)

P() can block on thread level, V() never blocks! 
 

Hence, a control flow on epilogue or interrupt level can also be a 
producer (assuming appropriate synchronization of the internal semaphore state.)
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Semaphore vs. Mutex
● Mutex is often understood as a two-valued semaphore

– Mutex   Semaphore with initial counter value 1→
– lock()   → P(), unlock()   → V()

● However, the semantics are different:
– A locked mutex (implicitly or explicitly) has an owner 

● Only this owner may call unlock().
● Mutex implementations e.g. on Linux or Windows check this.

– A mutex can (usually) also be locked recursively.
● Internal counter: The same thread may call lock() multiple times; after a 

matching number of unlock() calls, the mutex is unlocked again.
– In contrast, a semaphore can be incremented or decremented by any thread.

In many operating systems, the semaphore is the basic abstraction for 
synchronization objects. It is used as an implementation basis for 
mutexes, condition variables, reader-writer-locks, …

In many operating systems, the semaphore is the basic abstraction for 
synchronization objects. It is used as an implementation basis for 
mutexes, condition variables, reader-writer-locks, …
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Synchronization on Windows
● Windows takes the idea of waiting objects quite far

– Every kernel object is also a synchronization object
● explicit synchronization objects: Event, mutex, timer, semaphore
● implicit synchronization objects: File, socket, thread, process, …

– Waiting semantics depends on the object
● Thread waits for “signaled” state
● State is, if applicable, modified by successful waiting

● Uniform system interface for all object types
– Kernel object is represented by a HANDLE
– WaitForSingleObject(hObject, dwMillisec)

● Wait for synchronization object with timeout
– WaitForMultipleObjects(nCount, hObjects[], bWaitAll, 

dwMillisec)
● Wait for one or more synchronization objects with timeout

(“and”/“or” waiting, depending on bWaitAll = true/false)
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Synchronization Objects on Windows
Object Type Signaled when Successful waiting results in

Event Explicit state change 
(SetEvent()/ResetEvent())

Event reset (for AutoReset events)

Mutex Mutex is available Mutex is owned

Semaphore Semaphore counter > 0 Semaphore is decreased by 1

Waitable timer Specific point in time reached Timer reset (for AutoReset timers)

Change 
notification

Specific change in the file system –

Console input Input data available –

Process Process has terminated –

Thread Thread has terminated –

File An asynchronous file op. finished –

Serial device Data available / file op. finished –

Named pipe An asynchronous op. finished –

Socket An asynchronous op. finished –

Job (Win 2000) All processes of the job terminated –
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Synchronization and Costs
● Synchronization objects are managed in the kernel

– Critical data structures  protection→
– Internal synchronization on epilogue level  consistency→

● This can make their use very costly:
– We need to switch to the kernel for each state change.
– User/kernel mode transitions are very expensive.
– IA-32/x86-64: several hundred cycles!

● These costs are particularly pronounced for mutexes:
– The time needed for locking/unlocking mutexes is often a multiple of 

the time the critical section is locked.
– Actual contention (thread wants to enter an already locked section) rarely 

occurs.
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Synchronization and Costs
● Approach: Manage mutex as far as possible in user mode

– Minimize the normal-case cost
● Normal case: critical section is free
● Special case: critical section is locked

● Introduce a fast path for the normal case
– Test, locking and unlocking in user mode

● Ensure consistency algorithmically / with atomic CPU instructions
– Wait in kernel mode

● We need the kernel for the transition to the passive waiting state
– Further optimization for multiprocessor machines

● Busily wait for limited amount time before waiting passively
● High probability that the critical section is free before
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Windows: CRITICAL_SECTION
● Structure for a fast mutex in user mode [8]

– Internally uses an Event (kernel object) in case we must wait
– Lazy (on-demand) Event creation

● Specific system-call interface
– EnterCriticalSection(pCS) / TryEnterCriticalSection(pCS)

● Lock critical section (blocking) / try locking critical section (non-blocking)
– LeaveCriticalSection(pCS)

● Leave critical section
– SetCriticalSectionSpinCount(pCS, dwSpinCount)

● Define number of tries for busy waiting (multiprocessor systems only)

typedef struct _CRITICAL_SECTION {
  LONG LockCount;      // Number of waiting threads (-1 when free)
  LONG RecursionCount; // Number of successful EnterXXX calls
  DWORD OwningThread;  // Owner thread
  HANDLE LockEvent;    // Internal synchronization object, created on demand
  ULONG SpinCount;     // On MP systems: number of busy-wait tries until we
                       // passively wait in the kernel
} CRITICAL_SECTION, *PCRITICAL_SECTION;
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  ULONG SpinCount;     // On MP systems: number of busy-wait tries until we
                       // passively wait in the kernel
} CRITICAL_SECTION, *PCRITICAL_SECTION;

With Futexes (Fast user-mode 
mutexes), Linux 2.6 introduced a 
comparable but much more 
powerful concept. [7,6]

With Futexes (Fast user-mode 
mutexes), Linux 2.6 introduced a 
comparable but much more 
powerful concept. [7,6]
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Summary
● Threads can be preempted at any time

– Preemptive, probabilistic multitasking
– No run-to-completion semantics
– Access to shared state must be separately synchronized

● Thread synchronization: Many variants
– Mutex for mutual exclusion
– Semaphore for producer/consumer scenarios
– Many other abstractions possible: reader/writer locks, semaphore vectors, 

condition variables, timeouts, …

● Based on an OS concept for passive waiting
– Fundamental thread property: They can wait.
– Busy waiting and “hard” thread synchronization only make sense in 

exceptional cases.
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