
Fakultät Informatik Institut für Systemarchitektur, Professur für Betriebssysteme

OPERATING-SYSTEM
CONSTRUCTION

Inter-Process Communication (IPC)
https://tud.de/inf/os/studium/vorlesungen/betriebssystembau

HORST SCHIRMEIER

Material based on slides by Olaf
Spinczyk, Universität Osnabrück

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 2

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

Interrupt
handling

Inter-process
communication

Control-flow
abstraction

Interrupt
synchronization

Process management

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 3

Interrupt
handling

Overview: Lectures

Hardware

Application(s)

Device access
(drivers)

O
pe

ra
tin

g-
sy

st
em

 d
ev

el
op

m
en

t

Structure of the “OO-StuBS” operating system:

Interrupt
synchronization

Control-flow
abstraction

Process management

Inter-process
communication

Topic of today’s lectureTopic of today’s lecture

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 4

● Communication and Synchronization
● IPC via Shared Memory

– Semaphore, Monitor, Path Expressions
● IPC via Messages

– Send/Receive
● Basic Abstractions in Operating Systems
● Duality of Concepts
● Summary

Agenda

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 5

● Communication and Synchronization
● IPC via Shared Memory

– Semaphore, Monitor, Path Expressions
● IPC via Messages

– Send/Receive
● Basic Abstractions in Operating Systems
● Duality of Concepts
● Summary

Agenda

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 6

Communication and Synchronization
● … are related through the principle of causality:

 Message-based communication (usually) implies synchronization
(e.g. in send() and receive())

 Synchronization primitives are a suitable basis for implementing
communication primitives (e.g. semaphore)

If A needs a piece of information from B to
continue its work, A must wait until B
supplies that information.

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 7

● Communication and Synchronization
● IPC via Shared Memory

– Semaphore, Monitor, Path Expressions
● IPC via Messages

– Send/Receive
● Basic Abstractions in Operating Systems
● Duality of Concepts
● Summary

Agenda

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 8

IPC via Shared Memory
● Use cases / constraints

– Unprotected system (all processes in same address space)

– System with language-based memory protection
– Communication between threads in the same address space
– OS-supplied, MMU-based shared memory

(e.g. UNIX System V Shared Memory, see man page shm_overview(7))

– Common kernel address space of isolated processes

● Positive properties
– Atomic memory accesses do not require additional synchronization
– Fast: zero-copy
– Simple IPC applications easy to implement
– Unsynchronized communication possible
– M:N communication simple

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 9

Semaphore – Simple Interactions
● Mutual exclusion

● Unilateral synchronization

● Resource-oriented synchronization

// Shared memory
Semaphore mutex(1);
SomeType shared;

void process_1() {
 mutex.wait();
 shared.access();
 mutex.signal();
}

void process_2() {
 mutex.wait();
 shared.access();
 mutex.signal();
}

// Shared memory
Semaphore elem(0);
SomeQueue shared;

void producer() {
 shared.put();
 elem.signal();
}

void consumer() {
 elem.wait();
 shared.get();
}

// Shared memory
Semaphore resource(N); // N>1
SomeResource shared;

otherwise identical to
mutual exclusion

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 10

Semaphore – more Complex Interactions
● Readers–writers problem

– Writers need exclusive access to memory
– Multiple readers may work simultaneously

Acquire (Reader)
- become active reader
- wait as long active writers exist
- become reading reader

Release (Reader)
- stop being reader
- if no more reading readers exist
 but waiting writers, wake them up

READ

Acquire (Writer)
- become active writer
- wait as long active readers exist
- become writing writer
- wait for writer mutex

Release (Writer)
- release writer mutex
- stop being writer
- if no more active writers exist
 but waiting readers, wake them up

WRITEShared
memory

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 11

Semaphore – Readers–Writers Problem
// Acquire (Reader)
mutex.p();
ar++; // active readers
if (aw==0) {
 rr++; // reading readers
 read.v();
}
mutex.v();
read.p();

// Release (Reader)
mutex.p();
ar--; rr--;
while (rr==0 && ww<aw) {
 ww++;
 write.v();
}
mutex.v();

// Acquire (Writer)
mutex.p();
aw++; // active writers
if (rr==0) {
 ww++; // writing writers
 write.v();
}
mutex.v();
write.p();
w_mutex.p();

// Release (Writer)
w_mutex.v();
mutex.p();
aw--; ww--;
while (aw==0 && rr<ar) {
 rr++;
 read.v();
}
mutex.v();

READ WRITE

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 12

Semaphore – Discussion
● Extensions

– Non-blocking P()
– Timeout
– Counter array

● Sources of errors (bugs!)
– Semaphore use is not enforced
– Cooperating processes depend on each other

● All must comply with the protocol
– Implementation effort

 Programming-language support
– Enforces correct synchronization

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 13

Monitors – Synchronized ADTs [1]
● Idea: Couple abstract data type with synchronization

properties

Process A

enter monitor method 1

Shared
data

Shared
dataMethod 2Method 2

Method 1Method 1

...

Monitor

Process B

enter monitor method 2

potential blocking point

implicit
mutual exclusion
implicit
mutual exclusion

conditional
synchronization on
condition variable

conditional
synchronization on
condition variable

[1] C. A. R. Hoare, Monitor – An Operating System Structuring Concept, Communications of the ACM 17, 10, S. 549-557, 1974

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 14

Monitors – Producer–Consumer

List l;
condition queueNotEmpty;
List l;
condition queueNotEmpty;

Monitor syncBuf;

void produce(Elem& e) {
 l.enqueue(e);
 queueNotEmpty.signal();
}

void consume() {
 while (l.empty())
 queueNotEmpty.wait();
 return l.dequeue();
}

Producer Process

syncBuf.produce(e);

Consumer Process

e = syncBuf.consume();

potential blocking point

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 15

Monitors –
Readers–Writers

c
o
n
d
i
t
i
o
n

r
e
a
d
,
w
r
i
t
e
;

c
o
n
d
i
t
i
o
n

r
e
a
d
,
w
r
i
t
e
;

void startRead() {
 if (aw>0)
 read.wait();
 rr++;
 read.signal();
}

Monitor
rwMon;

void endRead() {
 rr--;
 if (rr==0)
 write.signal();
}

void startWrite() {
 aw++;
 if (busyW||rr>0)
 write.wait();
 busyW=true;
}

void endWrite() {
 busyW=false;
 aw--;
 if (aw==0)
 read.signal();
 else
 write.signal();
}

i
n
t

r
r
,
a
w
;

b
o
o
l

b
u
s
y
W
;

i
n
t

r
r
,
a
w
;

b
o
o
l

b
u
s
y
W
;

Reader Process

rwMon.startRead();

resource.read();

rwMon.endRead();

Writer Process

rwMon.startWrite();

resource.write();

rwMon.endWrite();

SomeType
resource;

Shared
data

Shared
data

void read() {
 ...
}

void write() {
 ...
}

not a monitor!not a monitor!

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 16

Monitors – Implementation
● … based on semaphores

void op() {
 mutex.p();
 // original op()
 ...
 cond.wait();
 ...
 cond.signal();
 ...
 // finished
 if (c_signal>0)
 s_signal.v();
 else
 mutex.v();
}

MonitorSemaphore mutex(1);
Semaphore s_signal(0);
Semaphore s_wait(0);
int c_signal = 0;
int c_wait = 0;

void Cond::wait() {
 c_wait++;
 if (c_signal>0)
 s_signal.v();
 else
 mutex.v();
 s_wait.p();
 c_wait--;
}

void Cond::signal() {
 if (c_wait>0) {
 c_signal++;
 s_wait.v();
 s_signal.p();
 c_signal--;
 }
}

Simple
implementation
that only supports a
single condition
variable

Simple
implementation
that only supports a
single condition
variable

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 17

Monitors – Discussion
● Limits concurrency to full mutual exclusion

– That’s why Java allows synchronized for individual methods.
● Coupling of logical structure and synchronization not

necessarily “natural”
– see readers–writers example
– Same problem: Just like with the semaphore, programmers must

comply with a protocol

 Synchronization should be separated from data organization
and methods.

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 18

Path Expressions [2]
● Idea: Flexible expressions describe permitted sequences of

execution and the object-access degree of concurrency
● path name1, name2, name3 end

– Arbitrary order and arbitrarily concurrent execution of name1–3
● path name1; name2 end

– Before each execution of name2 at least once name1
● path name1 + name2 end

– Alternative execution: either name1 or name2
● path N:(path expression) end

– max. N control flows are permitted to be in path expression
[2] R. H. Campbell and A. N. Habermann, The Specification of Process Synchronization by Path Expressions,
Lecture Note in Computer Science 16, Springer, 1974

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 19

Path Expressions – Example
● Idea: Flexible expressions describe permitted sequences of

execution and the degree of concurrency, e.g.:
● path 10:(1:(insert); 1:(remove)) end
● Synchronization of a 10-element buffer

– Mutual exclusion during execution of insert and remove
– At least one insert before each remove
– Never more than 10 finalized inserts that have not been removed yet

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 20

Path Expressions – Implementation (1)
● Transformation to a state machine

– State transition at entry/exit into/from operation
● Example:

bool mayInsert () {
 return c1<N && c2<1;
}

void startInsert () {
 c1++; c2++;
}

void endInsert () {
 c2--; seq1++;
}

N:(1:(insert) ; 1:(remove))
c2 c3

c1

seq1

For each 'X:(..)' and
';' we introduce a
counter.

For each 'X:(..)' and
';' we introduce a
counter.

bool mayRemove () {
 return c1<N && seq1>0 && c3<1;
}

void startRemove () {
 c3++; seq1--;
}

void endRemove () {
 c3--; c1--;
}

int c1=0;
int c2=0;
int c3=0;
int seq1=0;

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 21

Path Expressions – Implementation (2)
● Transforming the operations

void Insert() {
 mutex.p();
 if (!mayInsert()) {
 csem1++;
 mutex.v();
 sem1.wait();
 }
 startInsert();
 mutex.v();
 // [orig. insert code]
 mutex.p();
 endInsert();
 if (!wakeup())
 mutex.v();
}

N:(1:(insert) ; 1:(remove))
sem1/csem1 sem2/csem2

For each operation
we introduce a
semaphore and a
counter.

For each operation
we introduce a
semaphore and a
counter.

Semaphore mutex(1);
int csem1=0;
Semaphore sem1(0);
int csem2=0;
Semaphore sem2(0);

bool wakeup() {
 if (csem1>0 &&
 mayInsert()) {
 csem1--;
 sem1.v();
 return true;
 }
 if (csem2>0 &&
 mayRemove()) {
 csem2--;
 sem2.v();
 return true;
 }
 return false;
}

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 22

Path Expressions – Discussion
● Advantages

– More complex interaction patterns possible than with monitors
● read + 1: write

– Compliance with interaction protocols is enforced
● Less bugs!

● Disadvantages
– Synchronization behavior cannot depend on state variables or

parameters
● Extension: Path expressions with predicates

– Synchronization of the state machine itself can become the
bottleneck

– No support for path expressions in common programming languages

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 23

● Communication and Synchronization
● IPC via Shared Memory

– Semaphore, Monitor, Path Expressions
● IPC via Messages

– Send/Receive
● Basic Abstractions in Operating Systems
● Duality of Concepts
● Summary

Agenda

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 24

IPC via Messages
● Use cases/Constraints

– IPC across machine boundaries
– Interaction of isolated processes

● Positive properties
– Uniform paradigma for IPC with local and remote processes
– Buffering and synchronization if necessary
– Indirection allows for transparent protocol extensions

● Encryption, error correction, …
– High-level language mechanisms such as OO messages or procedure

calls can be mapped to IPC via messages (RPC, RMI)

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 25

Message-based Communication
● Already well-known from “Betriebssysteme und Sicherheit”:

Variations of send() and receive()
– synchronous / asynchronous (blocking / non-blocking)
– buffered / not buffered
– direct / indirect addressing
– fixed / variable message sizes
– symmetric / asymmetric communication
– with / without timeout
– broadcast / multicast

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 26

● Communication and Synchronization
● IPC via Shared Memory

– Semaphore, Monitor, Path Expressions
● IPC via Messages

– Send/Receive
● Basic Abstractions in Operating Systems
● Duality of Concepts
● Summary

Agenda

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 27

Basic Abstractions
● Which basic IPC abstractions do operating systems offer?

– UNIX: Sockets, System V Semaphore, messages, shared memory
– Windows NT/2000/...: Shared memory, events, Semaphore, Mutant,

sockets, asynchronous I/O, …
– Mach: Messages to ports and shared memory (with copy-on-write)

● System-internal abstractions
– Practically always: Semaphore

● Mutual exclusion & unilateral synchronization very common use cases→

– Microkernels and distributed operating systems: Messages
● Basis for message implementations: Synchronization primitives

– Monolithic systems: Semaphore and shared memory

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 28

● Communication and Synchronization
● IPC via Shared Memory

– Semaphore, Monitor, Path Expressions
● IPC via Messages

– Send/Receive
● Basic Abstractions in Operating Systems
● Duality of Concepts
● Summary

Agenda

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 29

Duality – Messages in Shared Memory
● Semaphores + shared memory → Mailbox abstraction

● Messages are not
copied
– Sender provides memory

● Receive may block
● Mailbox abstraction

allows for M:N IPC

class Mailbox : public List {
 Semaphore mutex(1);
 Semaphore has_elem(0);
public:
 void send(Message *msg) {
 mutex.p();
 enqueue(msg); // from List
 mutex.v();
 has_elem.v();
 }
 Message *receive() {
 has_elem.p();
 mutex.p();
 Message *result = dequeue(); // List
 mutex.v();
 return result;
 }
};

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 30

[3] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors,
PhD Thesis, Yale University, 1986

Process BProcess A

SVM

Duality – Shared Memory with Messages

a = 42a = 42

invalidinvalid

invalidinvalid

invalidinvalid

b = 8b = 8

c = 15c = 15

Access
OK

Access
(read b)
prohibited

Co
nt

ro
l fl

ow

Co
nt

ro
l fl

ow

Operating system
Page Fault
Handler
Page Fault
Handler

Trap

Copy the page,
reconfigure ownership,
retry access

Copy the page,
reconfigure ownership,
retry access

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 31

[3] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors,
PhD Thesis, Yale University, 1986

Process BProcess A

SVM

Duality – Shared Memory with Messages

a = 42a = 42

b = 8b = 8

invalidinvalid

invalidinvalid

invalidinvalid

c = 15c = 15

Access
OK

Access
OK

Co
nt

ro
l fl

ow

Co
nt

ro
l fl

ow

Operating system
Page Fault
Handler
Page Fault
Handler

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 32

Duality – Discussion SVM
● Distributed virtual shared memory allows …

– to apply the multiprocessor programming model on distributed
systems

– IPC via (virtual) shared memory in spite of isolated address spaces
● Problems:

– Communication and trap-handling latency
– “False sharing” – Page size does not match object size

● Approaches:
– Weak consistency models, e.g.:

● Not every access causes a trap, accept outdated values
● Distribute changes asynchronously via broadcast / multicast

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 33

Duality – Active Objects
● Objects with control flow
● Suited for access synchronization in systems with message-based

IPC
class Server : public ActiveObject {
 Msg msg; // Message buffer
public:
 ...
 // Object with control flow!
 void action() {
 while (true) {
 receive(ANY, msg); // receive msg.
 switch (msg.type()) {
 case DO_THIS: doThis(); break;
 case DO_THAT: doThat(); break;
 default: handleError();
 }
 reply(msg);
 }
 }
};

Mutual exclusion guaranteed by
processing loop in the server.
Synchronous send blocks a client
as long as the server is still busy.

● just like a monitor

Mutual exclusion guaranteed by
processing loop in the server.
Synchronous send blocks a client
as long as the server is still busy.

● just like a monitor

void client1() {
 Message msg(DO_THIS);
 send(srv, msg);
}

void client2() {
 Message msg(DO_THAT);
 send(srv, msg);
}

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 34

Duality – Active Objects
● Reader–writer synchronization with message exchange

class RWServer : public ActiveObject {
 Msg msg; // Message buffer
public:
 ...
 // Control flow
 void action() {
 while (true) {
 receive(ANY, msg); // receive msg.
 switch (msg.type()) {
 case START_READ: startRead(); break;
 case DO_READ: doRead(); break;
 case END_READ: endRead(); break;
 case START_WRITE: startWrite(); break;
 case DO_WRITE: doWrite(); break;
 case END_WRITE: endWrite(); break;
 default: msg.type(ERROR); reply(msg);
 }
 }
 }
};

void reader() {
 Msg start_read(START_READ);
 send(srv, start_read);
 Msg read_msg(DO_READ);
 send(srv, read_msg);
 Msg end_read(END_READ);
 send(srv, end_read);
 // use data in 'read_msg'
}

void writer() {
 Msg start_write(START_WRITE);
 send(srv, start_write);
 // fill message here
 Msg write_msg(DO_WRITE);
 send(srv, write_msg);
 Msg end_write(END_WRITE);
 send(srv, end_write);
}

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 35

Duality – Active Objects
● Reader–writer synchronization with message exchange

– Actual read/write operations happen concurrently in a child process

void RWServer::doRead() {
 Msg copy=msg;
 if (fork()==0) {
 // actual read op.
 copy.set(...) // reply
 reply(copy);
 }
 else {
 } // Parent proc.: nothing
}

void RWServer::doWrite() {
 Msg copy=msg;
 if (fork()==0) {
 // actual write op.
 // (uses 'copy')
 reply(copy);
 }
 else {
 } // Parent process: nothing
}

The ‘request’ message must be copied
because it could be overwritten while the
child process is being executed.

The ‘request’ message must be copied
because it could be overwritten while the
child process is being executed.

The server process can immediately
wait for more requests.
The server process can immediately
wait for more requests.

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 36

Duality – Active Objects
● Reader–writer synchronization

with message exchange

void RWServer::startRead() {
 ar++;
 if (aw>0)
 read.copy_enqueue(msg);
 else {
 rr++; reply(msg);
 }
}

void RWServer::endRead() {
 ar--; rr--;
 if (rr==0 && aw>0) {
 Msg wmsg=write.dequeue();
 ww++; reply(wmsg);
 }
 reply(msg);
}

void RWServer::startWrite() {
 aw++;
 if (ww>0 || rr>0)
 write.copy_enqueue(msg);
 else {
 ww++; reply(msg);
 }
}

void RWServer::endWrite() {
 aw--; ww--;
 if (aw>0) {
 Msg wmsg=write.dequeue();
 ww++; reply(wmsg);
 }
 else while (rr < ar) {
 Msg rmsg=read.dequeue();
 rr++; reply(rmsg);
 }
 reply(msg);
}

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 37

Duality – Discussion
● Is there a fundamental difference between IPC via shared

memory and IPC via messages?
– or more provocatively: Which is better – microkernels or monoliths?

● Example: Reader–writer monitor vs. server:
– Monitor: 2 potential waiting points

● Client is delayed for mutual exclusion
● Client is potentially further delayed due to a condition variable

– Server: 2 potential waiting points
● Reply is delayed because the server serves other requests
● Reply is potentially further delayed if the request must be enqueued in a

waiting queue

● Conclusion: Synchronization and concurrency identical!

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 38

● Communication and Synchronization
● IPC via Shared Memory

– Semaphore, Monitor, Path Expressions
● IPC via Messages

– Send/Receive
● Basic Abstractions in Operating Systems
● Duality of Concepts
● Summary

Agenda

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 39

Summary
● Two central IPC-mechanism classes:

– IPC via shared memory
– Message-based IPC

● Mechanisms of both classes exist in real-world OSs
– However, language mechanisms like monitors and path expressions

usually cannot be used in OS development
● Neither class is generally better regarding synchronization

behavior and degree of concurrency
– Advantages and disadvantages lie in other properties (see slides 8 and 24)

2024-06-24 OSC: L10 Inter-Process Communication (IPC) 40

Bibliography
[1] C. A. R. Hoare, Monitor – An Operating System Structuring Concept, Communications

of the ACM 17, 10, S. 549-557, 1974

[2] R. H. Campbell and A. N. Habermann, The Specification of Process Synchronization by
Path Expressions, Lecture Note in Computer Science 16, Springer, 1974

[3] K. Li, Shared Virtual Memory on Loosely Coupled Multiprocessors, PhD Thesis, Yale
University, 1986

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

