
Moslab – Chair of Operating Systems
Keyboard Device Driver & Integration

Viktor Reusch and Tianhao Wang,
original slides by Martin Küttler



Last assignment

Any questions?

1 / 19



Hotfix

I fixed some bugs in the code base at
https://os.inf.tu-dresden.de/repo/gitbox/teaching/moslab-code.git:
996b758d, 66818ee4, 6ea3af57, 4ed78e3a
You should cherry-pick or rebase to get the hotfix applied.

2 / 19

https://os.inf.tu-dresden.de/repo/gitbox/teaching/moslab-code.git


We are here

Pong Server

Paddle Client 1 Paddle Client 2

Keyboard Driver Console

Memory Management

Moe

Sigma0

Fiasco Kernel

3 / 19



Let’s Play Pong

You will need a Ned configuration file. . .

local pong_server = ld:new_channel ();
ld:start({

caps = { PongServer = pong_server:svr(), vesa = fbdrv },
log = { "server", "blue" },

}, "rom/pong -server ");

ld:start({
caps = { PongServer = pong_server },
log = { "client", "green" },

}, "rom/pong -client ");

Look at your previous assignments for modules.list and frame buffer setup.

But
ho

w
to

co
ntr

ol
the

pa
dd

les
‽

4 / 19



Let’s Play Pong

You will need a Ned configuration file. . .

local pong_server = ld:new_channel ();
ld:start({

caps = { PongServer = pong_server:svr(), vesa = fbdrv },
log = { "server", "blue" },

}, "rom/pong -server ");

ld:start({
caps = { PongServer = pong_server },
log = { "client", "green" },

}, "rom/pong -client ");

Look at your previous assignments for modules.list and frame buffer setup.But
ho

w
to

co
ntr

ol
the

pa
dd

les
‽

4 / 19



Today’s goal

Pong Server

Paddle Client 1 Paddle Client 2

Keyboard Driver Console

Memory Management

Moe

Sigma0

Fiasco Kernel

5 / 19



PS/2 Keyboard Controler

Source: http://wiki.osdev.org/"8042"_PS/2_Controller

6 / 19



Driving the keyboard

▶ Subscribe to interrupt 0x1.
▶ On interrupt:

▶ Read scan code from I/O port 0x60 (inb 0x60).
▶ Translate scan code into key code and action.

▶ Wrap a server interface around it, and you’re done.

7 / 19



Getting access to the IO port

Add to x86-legacy.devs (inside outer function)

PS2 = Hw.Device(function ()
Property.hid = "PNP0303";
Resource.iop1 = Res.io (0x60 , 0x60); -- PS/2 device 1
Resource.iop2 = Res.io (0x64 , 0x64); -- PS/2 device 2
Resource.irq1 = Res.irq(1, 0x000000 );
Resource.irq2 = Res.irq (12, 0x000000 );

end);

8 / 19



Getting access to the IO port

The following is already in x86-fb.io (and probably shouldn’t be called gui, feel free to
rename).

Io.add_vbus("gui", Io.Vi.System_bus
{

ps2 = wrap(hw:match("PNP0[3F]??"));
})

Then give IO a server cap (called gui) to a gate, and give the client cap to your
keyboard server (called vbus).

9 / 19



How to handle irqs and ioports in C

▶ For irqs look at pkg/examples/sys/isr (it’s C, you can figure out the C++
interface).

▶ Though, you will need l4io_request_icu to get the ICU.
▶ Request io port from vbus: l4io_request_ioport (0x60 , 1).
▶ Read value from io port (after you received an interrupt): l4util_in8 (0x60).

10 / 19



Assignment, part 1

▶ Build a working keyboard driver and keyboard multiplexer.
▶ The keyboard driver sends the keyboard events to the multiplexer.
▶ The multiplexer remembers which keys are currently pressed.
▶ You already have working pong clients in src/l4/pkg/pong/examples.
▶ Modify the pong clients to be controllable by keyboard, with different controls.
▶ Let the pong clients periodically query the pressed keys from the keyboard

multiplexer.

11 / 19



Graphical console multiplexing

▶ Now there are two programs that can draw: pong and the console, so we need to
multiplex graphics.

▶ One of them should render into physical framebuffer, while the other renders into
plain memory.

▶ You will need a dataspace server that serves both clients.
▶ For switching, that server will unmap both dataspaces and remapped them in

reverse order.

12 / 19



Graphical console multiplexing

Physical FB

Dataspace Server

Client 1 Client 2

13 / 19



Graphical console multiplexing

Physical FB

Dataspace Server

Client 1 Client 2

14 / 19



Graphical console multiplexing

▶ Your server will need to
▶ hand out two capabilities to frame buffers (i.e. to gates, that you respond on),
▶ implement the frame buffer interface as defined in

src/l4/pkg/l4re-core/l4re/include/video/goos, and
▶ implement dataspaces as defined in src/l4/pkg/l4re-core/l4re/include/dataspace.

▶ Have a look at src/l4/pkg/l4re-core/l4re/util/include/dataspace_svr for a nearly
complete dataspace implementation.

▶ Hint: Make sure that the dataspace server has the pages that it wants to map out
to clients mapped itself.

15 / 19



Switching Console Clients

1. User indicates a client switch.

2. Unmap physical FB from client.

3. Make client’s FB point to a virtual copy (on next page fault).

4. Unmap new client’s virtual FB.

5. Copy new client’s virtual data into physical FB.

6. Make new client’s FB point to physical FB (on next page fault).

16 / 19



Assignment, part 2

▶ Implement console switching, so that the user can play pong and switch to the
console at any time.

▶ Extend your keyboard multiplexer to a full-fledged console multiplexer (keyboard +
frame buffer).

17 / 19



Assignment, part 3

▶ On real hardware you can’t read pong’s output: Edit send_ipc () in
pkg/pong/include/logging.h to send all output to your log server.

▶ Prepare for question regarding this lab in the MOS exam.

18 / 19


