Moslab — Chair of Operating Systems
Keyboard Device Driver & Integration

Viktor Reusch and Tianhao Wang,
original slides by Martin Kiittler

Last assignment

Any questions?

1/19

Hotfix

| fixed some bugs in the code base at
https://os.inf.tu-dresden.de/repo/gitbox/teaching/moslab-code.git:
996b758d, 66818ee4, 6ea3afb7, 4ed78e3a

You should cherry-pick or rebase to get the hotfix applied.

2/19

https://os.inf.tu-dresden.de/repo/gitbox/teaching/moslab-code.git

We are here

- Pong Server

‘ Paddle Client 1 ‘ ‘ Paddle Client 2 ‘

‘ Keyboard Driver ‘ ‘ Console ‘

‘ Memory Management ‘

Moe

[Facked |

3/19

Let's Play Pong

You will need a Ned configuration file. ..

local pong_server = ld:new_channel ();
ld:start ({
caps = { PongServer = pong_server:svr(), vesa = fbdrv 1},
log = { "server", "blue" 1},
}, "rom/pong-server");
ld:start ({
caps = { PongServer = pong_server 1},
log = { "client", "green" 1},

}, "rom/pong-client");

Look at your previous assignments for modules.list and frame buffer setup.

4/19

Let's Play Pong

You will need a Ned configuration file. ..

R
N

local pong_server = ld:new_channel 6
ld:start ({ Q,b
caps = { PongServer = pong \(\8 ¢sa = fbdrv },
log = { "server", "blue" \&’
}, "rom/pong-server"); &(O
O
ld:start ({ C

caps = { Po-
log = { " O¢‘ S N
}, "rom’ \(\

X
Look at %0 _aments for modules.list and frame buffer setup.

4/19

Today's goal

- Pong Server

‘ Paddle Client 1 ‘ ‘ Paddle Client 2 ‘

‘ Keyboard Driver ‘ ‘ Console ‘

‘ Memory Management ‘

Moe

[Facked |

5/19

PS/2 Keyboard Controler

IRG
Source: http://wiki.osdev.org/"8042" PS/2 Controller

6/19

Driving the keyboard

» Subscribe to interrupt Ox1.
» On interrupt:

» Read scan code from 1/O port 0x60 (inb 0x60).

» Translate scan code into key code and action.

> Wrap a server interface around it, and you're done.

7/19

Getting access to the 10 port

Add to x86-legacy.devs (inside outer function)

PS2 = Hw.Device(function ()

Property

Resource.
Resource.
Resource.

end) ;

.hid
Resource.

iopl
iop2
irql
irq2

"PNP0O303";
Res.i0(0x60, 0x60); -- PS/2 device 1
Res.i0(0x64, 0x64); -- PS/2 device 2

Res

Res.

.irq(1, 0x000000);

irq (12, 0x000000);

8/19

Getting access to the 10 port

The following is already in x86-fb.io (and probably shouldn’t be called gui, feel free to
rename).

To.add_vbus("gui", Io.Vi.System_bus

{
ps2 = wrap (hw:match ("PNPO[3F]77"));
1))

Then give 10 a server cap (called gui) to a gate, and give the client cap to your
keyboard server (called vbus).

9/19

How to handle irgs and ioports in C

» For irgs look at pkg/examples/sys/isr (it's C, you can figure out the C++
interface).

» Though, you will need 14io_request_icu to get the ICU.
» Request io port from vbus: 14io_request_ioport (0x60, 1).
» Read value from io port (after you received an interrupt): 14util_in8 (0x60).

10/19

Assignment, part 1

vV VYvyVvYVvy

Build a working keyboard driver and keyboard multiplexer.

The keyboard driver sends the keyboard events to the multiplexer.

The multiplexer remembers which keys are currently pressed.

You already have working pong clients in src/l4/pkg/pong/examples.

Modify the pong clients to be controllable by keyboard, with different controls.

Let the pong clients periodically query the pressed keys from the keyboard
multiplexer.

11/19

Graphical console multiplexing

> Now there are two programs that can draw: pong and the console, so we need to
multiplex graphics.

» One of them should render into physical framebuffer, while the other renders into
plain memory.

» You will need a dataspace server that serves both clients.

» For switching, that server will unmap both dataspaces and remapped them in
reverse order.

12/19

Graphical console multiplexing

13/19

Graphical console multiplexing

14/19

Graphical console multiplexing

» Your server will need to
> hand out two capabilities to frame buffers (i.e. to gates, that you respond on),
» implement the frame buffer interface as defined in
src/14/pkg/l4re-core/l4re/include/video/goos, and
» implement dataspaces as defined in src/14/pkg/l4re-core/l4re/include/dataspace.
» Have a look at src/l4/pkg/l4re-core/l4re/util /include/dataspace svr for a nearly
complete dataspace implementation.

» Hint: Make sure that the dataspace server has the pages that it wants to map out
to clients mapped itself.

15/19

Switching Console Clients

IS e o

User indicates a client switch.

Unmap physical FB from client.

Make client's FB point to a virtual copy (on next page fault).
Unmap new client’s virtual FB.

Copy new client’s virtual data into physical FB.

Make new client’'s FB point to physical FB (on next page fault).

16 /19

Assignment, part 2

» Implement console switching, so that the user can play pong and switch to the
console at any time.

» Extend your keyboard multiplexer to a full-fledged console multiplexer (keyboard +
frame buffer).

17/19

Assignment, part 3

» On real hardware you can't read pong's output: Edit send_ipc () in
pkg/pong/include/logging.h to send all output to your log server.

» Prepare for question regarding this lab in the MOS exam.

18/19

