
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Paper Reading: 
Application Performance and
Flexibility on Exokernel Systems

2006-11-01

M. Frans Kaashoek, Dawson R. Engler et. al.

presented by Bjoern Doebel



2006-11-01 Presentation Title Slide 2 von MAXNR

Overview

• Introduction to
– Exokernels
– Library Operating Systems

• Xok and ExOS
• Multiplexing Stable Storage
• Performance
• Lessons learned



2006-11-01 Presentation Title Slide 3 von MAXNR

Exokernels

• “Exokernels protect resources, applications 
manage them.”

Hardware

Exokernel

Application Application

Library OS



2006-11-01 Presentation Title Slide 4 von MAXNR

Exokernels

• Provide primitives at the lowest level of 
abstraction.

• Only manage resources to achieve protection.
– allocation, revocation, sharing, ownership

• Support cooperative applications, but also 
handle evil ones.

• Expose physical names.
• Expose kernel information to applications.



2006-11-01 Presentation Title Slide 5 von MAXNR

Library Operating Systems

• provide higher-level OS abstractions
• linked with the application
• unprivileged, customizable
• application can “overwrite” specific library 

functionality
• need protection against other LibOSes:

– software regions
– hierarchically-named capabilities
– wakeup predicates (downloaded code)
– do not use locks for critical sections

• levels of trust (mutual, unidirectional, distrust)



2006-11-01 Presentation Title Slide 6 von MAXNR

The Xok Exokernel

• Kernel implemented for x86, similar to Aegis 
(MIPS)

• RR CPU Scheduling, explicit start/stop 
notifications

• Network multiplexing using packet filtering
• HW Page tables exposed through system calls
• explicit credentials (capabilities) needed to 

perform each system call



2006-11-01 Presentation Title Slide 7 von MAXNR

The ExOS Library OS

• Targetted at providing abstractions similar to 
BSD
– missing: paging, process swapping, process 

groups, windowing system
• Can run unmodified UNIX applications
• UNIX state mostly private to each instance of 

ExOS
• IPC: 

– pipes -> software regions
– signals -> Xok IPC
– sockets -> shared mem, network libs

• shared library without relocation overhead



2006-11-01 Presentation Title Slide 8 von MAXNR

XN: Multiplexing Stable Storage

• Problem 1: Disk operations need to be 
protected efficiently.

• Solution: Secure bindings
– at bind time disk block is mapped to a physical 

memory page
– FS server creates a capability for this page
– everyone can now access the page using this 

capability

-> Exokernel does not know about security 
policy, but enforces protection.



2006-11-01 Presentation Title Slide 9 von MAXNR

XN: Multiplexing Stable Storage (2)

• Problem 2: 
– Exokernel does not know about file systems 

and their metadata, but need to enforce 
protection.

• Solutions:
– add capability for each disk block

• way too slow

– enhance blocks with application-specific data
• not enough space

– template-based metadata description
• Exokernel should not define what block types exist.

– Untrusted Deterministic Functions



2006-11-01 Presentation Title Slide 10 von MAXNR

XN: Untrusted Deterministic Functions (UDFs)

• Idea: Let the application / FS developer define 
how to extract protection information from the 
metadata.

• Templates specified using 3 UDFs:
– owns(m): list of all disk blocks this metadata 

points to and their respective UDFs
– acl(): boolean check if a certain modification 

can be performed given a capability
– size(): size of metadata



2006-11-01 Presentation Title Slide 11 von MAXNR

XN: Ordering disk writes

• Disk writes need to be ordered to be 
consistent across crashes.

• Never reuse disk blocks before deleting all 
pointers to it.
– reference counter for disk blocks

• Never create persistent pointers before 
initializing them.
– “tainted” blocks must not be written to disk

• When moving blocks, never reset old pointers 
before new ones were set.
– no need to enforce this



2006-11-01 Exokernels Slide 12 von MAXNR

XN: Sharing blocks

• Applications can share disk blocks and map 
them to their own physical pages.

• Backing pages must be provided by 
application.

• Exokernel implements buffer cache registry to
– cache established block-mem mappings
– track state of mappings

• (De-)Allocation controlled by applications.
• Only block owners may issue write to disk.

– Optimization: unowned disk blocks written by 
anyone (async. flush daemons)



2006-11-01 Exokernels Slide 13 von MAXNR

The co-locating fast file system C-FFS

• Library File System on top of XN
• Uses downloaded code
• Four major additions:

– Map Unix ACLs to exokernel capabilities
– Enforce UNIX-specific semantics (e.g., unique 

file names in directories)
– Enforce metadata consistency (blocks are not 

written to disk unless metadata is correct)
– Keep track of file modification times etc.



2006-11-01 Exokernels Slide 14 von MAXNR

Application performance



2006-11-01 Exokernels Slide 15 von MAXNR

Application performance (2)

• Protection mechanisms add overhead, but real 
workloads are dominated by other things.

• Applications custom-tailored for ExOS can 
outperform legacy applications.



2006-11-01 Exokernels Slide 16 von MAXNR

Exokernels – Pros and Cons

• Pros
– Exposing internal kernel structures
– Libraries are simpler than kernels

• Cons
– Interface design is difficult
– Information loss
– Self-paging LibOSes proven difficult



2006-11-01 Exokernels Slide 17 von MAXNR

Design lessons learned

• Provide space for app data in kernel structures
• Fast apps are necessarily good in 

microbenchmarks
• Need for inexpensive critical sections
• User-level page tables are complex.
• Downloaded code is powerful.



2006-11-01 Exokernels Slide 18 von MAXNR

In the end

I'm done.


