
Design and Implementation of an 

Operating System
to Support

Distributed Multimedia 
Applications



Context

• we are in the year 1996

• multimedia was promised, but not delivered 
(think Windows 95)

• traditional operating systems are not well-
suited for this, so redesign from scratch

• „Nemesis“



Assumptions

• General purpose platforms will process 
continuous media.

• Users will run many apps which manipulate 
media simultaneously.

• Such apps will make varying demands on 
resources during their execution.

• Application mix and load will be dynamic.



What‘s wrong?

• application QoS crosstalk

• by sharing the same physical processor 
without decent mechanisms to control 
the resulting interference

• contention when services multiplex low-
level resources

• real-time threads do not help



Design Principle

• execute as much functionality as possible in 
the application domain

• services are provided as shared libraries 
(Welcome to Exokernels?)

• use a single address space and protect 
with page table access control fields

• multiplexing system resources at the lowest 
level possible



Multimedia

two important properties of continuous 
media streams:

• temporal property

• informational property



QoS Model

hard real-time best effort

Feedback Control



QoS Feedback

D
esired 

Perform
ance

R
esource 

Provision

A
pplication 

Perform
ance

Application 
Execution

Application 
Adaptation

QoS 
Manager

QoS 
Controller



Implications

• applications do not need to know their 
resource requirements in advance

• applications need to adapt

• servers introduce virtual resources that 
must be allocated consistently

• resource usage must be properly 
accounted



Resource Accounting

• migrating threads

• threads cross protection domains

• must be scheduled by the kernel

• application no longer in control

• server has its own time

• resource accounting must be communicated

• crosstalk still occurs

• nesting calls?



Vertical Integration

• minimal use of shared servers

• server performs only privileged operations

• everything else is done by the application

• controlled exposure of internal server state 
to clients

• single virtual address space eases sharing



Virtual Processor 
Interface

• tells the application when and why it is 
being scheduled

• supports user-level multiplexing of the CPU

• key concepts: activations, events

• provides time independent of scheduler 
clock



Activations

Context Slots

Resume Slot

Activation Slot

Activation Bit = 1

Deschedule

Schedule – Upcall

= 0

DescheduleSchedule



Events

• monotonically increasing integer

• read and modified atomically by the sending 
domain

• recipient holds readonly copy updated by 
the kernel

• these channels are initiated by the Binder

• IDC and interrupt dispatch build on events



Kernel Structure

• no kernel threads, only interrupt and trap 
handlers

• interrupts are relayed to device driver 
domains

• this way, devices with a high interrupt rate 
do not interfere with the scheduling



Scheduling

• scheduling domains receive shares of the 
processor over short time frame

• scheduling domains are sets of domains

• scheduling domains can be

• under a QoS contract

• best-effort

• scheduling algorithm is open to choice



Synchronization
read(e) returns the value of event e

await(e,v) blocks the caller until e ≥ v

await_until(e,v,t) await(e,v) with timeout

advance(e,n) e += n

read(s) returns the value of sequencer s

ticket(s) returns and advances s



Higher Level 
Constructs

• interface reference vs. invocation reference

• the latter can be a pointer to the actual 
code or to a surrogate

• binding can be implicit or explicit

• interfaces use an IDL compiler (MIDDL)

• no global symbols



Opinion

• traditional vs. multimedia

• current multimedia apps are traditional

• single address space?

• is communication that expensive?

• real-time too troublesome?

• we have probabilistic scheduling with 
proven QoS properties


