Paper Reading Group

Dec 13th, 2006

Evaluating SFI for a CISC Architecture
by

Stephen McCamant (MIT),
Greg Morrisett(Harvard University)

Reference

* This presentation is derived work. The original paper can be found

at [2] as of Dec 2006. All pictures are directly copied from it. The
project has also a home page [1].

[1] http://pag.csail.mit.edu/~smcc/projects/pittsfield

[2] http://pag.csail.mit.edu/~smcc/projects/pittsfield/pubs/usenix-
sec-2006/pittsfield-usenix2006.pdf

http://pag.csail.mit.edu/~smcc/projects/pittsfield

Motivation

« untrusted code in secure systems
« SFl constrains actions to security policy by rewriting
« original SFI worked only on RISC

- registers dedicated to SFlI
- instruction boundaries are well known

Other Options

« hardware memory protection

- robust and low (runtime) overhead

- coarse-grain and relatively expensive interaction across a
process boundary

« type-safe languages

- control flow and memory access limited to well-behaved patters
by languages type discipline

- limited to one language, no support for C/C++
- no mechanisms to constrain code at machine instruction level

« SFl lies in between

- security policy similar to OS
- ahead-of-time verification of type system

Classic SFl

prevent potentially unsafe insn from being executed with improper
arguments

check pointers for validity

- original SFI proposed naturally alligned regions (AND operation)

ensure that checks cannot be bypassed

- Insert check before potentially unsafe operation
- jump might redirect control flow behind the check
- indirect jumps are the hard problem

« switch, function pointers, object dispatch tables

- Wahbe et all directed all operations through a dedicated
register so that a jump to ANY instruction in the code region
would be safe

CISC SFI

« Wahbe's approach not applicable for CISC

- shortage of registers makes dedication undesirable (though
only 2 instead of 5 would be needed)

» checks must precede critical instructions
« variable length instructions

- it is infeasible to check ALL possible instruction streams
- artificially enforce alignment
* insertion of nops

« control transfer is only allowed to the start of a chunk

- call goes to the end of chunk so that the return enters
at the beginning of the next one

Chunks

. §F 10 | I | [§ 1 1§ s
I | | | T 1 fF 1 1 == | | | I
1 1 1 sjmsm 2) | [T 1 1 1 1 ===
1 =)] [|| | Y I | I |

- Ikl Im I mm | I D D B
I | || | I N | T 1 1 0 |

Optimizations

special reqgisters

- handle ebp which is already constrained by the ABI as
reserved register, i.e. check when reloaded

guard regions
ensure, do not check
one-instruction address operation

- address region tag contains only one bit set
- zero tag region is unmapped
efficient return

- exploit call/return prediction in modern processors

push
mowv
mowv
mow
lea

mov
pop

ret

Rewriting Example

tebp

tesp, %ebp
B(%ebp), %edx
dB{%edx), %eax
1l{%eax), %ecx

Secx, 4B (%edx)
tebp

push %ebp

mowv tesp, %ebp

Mo B (%ebp), %edx
oW 48 (%5edx), %Seax
lea 1{%eax), %Secu

les U f—...-._|_.- e Sl

lea 4B (%edx), %ebu
les I {%esi), %esi

IN=F D{%edi), %edi

and S0xZ20fff£ff, %ebm
oW Secx, (%ebx)

pop Sebp

les D{%esi), %esi

and SOx20££££fEf, %ebp
andl SOx10ELE££F0, (%esp)

Verification

« compilation and rewriting are performed by untrusted
producer

« safety policy is enforced by a separate verification tool

- should be dependable (i.e. small)
- check security properties

* jumps never outside its code region
« writes never outside its data region
- not generally decidable

* be conservative: allow false negatives but no false
positives

10

Prototype

* rewriting tool

- text processing tool

« 720 LOC
« operates on input to gas

- one reserved register to hold the sandboxed address for
both data and code regions

- 64k guard regions
« verifier (2 versions)
- text processing (700 LOC)
- Integrated in the object loader
« check 2.7MB rewritten gcc in half a second

11

Performance Evaluation

NOP sandboxing

Mo %eebx

No scheduling

iy Real sandboxing

bl | (T

I
I

I
I

I
I

I

<]
<]
<)
II
I
I
I
I
I
TTTITTTIT

-
i

-]
-]
[1
1
[1
 —
|||I
===

B

=

10%: M
5'9.-"::- [
0%

perl wortex eon gap crafty twolf parser vpr gzip bzip2 mcf G, mean

gcc

12

Program
Size

Ratio
Compressed

gce
2. M
1.84
1.05

perl
1.2M
1.96
1.07

Size Inflation

vortex eon gap crafty twolf parser
1010K 923K 853K 408K 390K 276K
1.63 1.72 1.84 1.62 1.80 192
(.98 1.05 1.05 1.06 1.08 1.06

Vpr
267K
1.67
1.07

gzip
109K
1.65
1.10

bzip2 mct

108K 50K
1.63 1.74
1.09 1.13

13

Application Case Study: VXA

Zlib BZip2 JPEG JPEG2000 FLAC Vorbis Geom. Mean

VX32 1.006 0975 1.034 1.283 0.954 0.948 1.028
PittSFleld jump-only 1.238 1.018 1.134 [.114 1.142 1.239 1.145
PittSFIeld full 1.398 1.072 1.328 1.211 1.241 |.458 1.278

14

Formal Analysis

« ACL2 proof for verificator

« “If the verifier approves the rewritten code, then for any
Inputs, execution of the code will contineu forever without
performing an unsafe operation”

15

