
1

Paper Reading Group
Dec 13th, 2006

Evaluating SFI for a CISC Architecture
by

Stephen McCamant (MIT), 
Greg Morrisett(Harvard University)



2

Reference

● This presentation is derived work. The original paper can be found 
at [2] as of Dec 2006. All pictures are directly copied from it. The 
project has also a home page [1].

[1] http://pag.csail.mit.edu/~smcc/projects/pittsfield
[2] http://pag.csail.mit.edu/~smcc/projects/pittsfield/pubs/usenix-
sec-2006/pittsfield-usenix2006.pdf

http://pag.csail.mit.edu/~smcc/projects/pittsfield


3

Motivation

● untrusted code in secure systems

● SFI constrains actions to security policy by rewriting

● original SFI worked only on RISC

– registers dedicated to SFI

– instruction boundaries are well known



4

Other Options
● hardware memory protection 

– robust and low (runtime) overhead

– coarse-grain and relatively expensive interaction across a 
process boundary

● type-safe languages

– control flow and memory access limited to well-behaved patters 
by languages type discipline

– limited to one language, no support for C/C++

– no mechanisms to constrain code at machine instruction level

● SFI lies in between

– security policy similar to OS

– ahead-of-time verification of type system



5

Classic SFI

● prevent potentially unsafe insn from being executed with improper 
arguments

● check pointers for validity

– original SFI proposed naturally alligned regions (AND operation)

● ensure that checks cannot be bypassed

– insert check before potentially unsafe operation

– jump might redirect control flow behind the check

– indirect jumps are the hard problem

● switch, function pointers, object dispatch tables

– Wahbe et all directed all operations through a dedicated 
register so that a jump to ANY instruction in the code region 
would be safe



6

CISC SFI

● Wahbe's approach not applicable for CISC

– shortage of registers makes dedication undesirable (though 
only 2 instead of 5 would be needed)

● checks must precede critical instructions

● variable length instructions

– it is infeasible to check ALL possible instruction streams

– artificially enforce alignment

● insertion of nops
● control transfer is only allowed to the start of a chunk

– call goes to the end of chunk so that the return enters 
at the beginning of the next one



7

Chunks



8

Optimizations

● special registers

– handle ebp which is already constrained by the ABI as 
reserved register, i.e. check when reloaded

● guard regions

● ensure, do not check

● one-instruction address operation

– address region tag contains only one bit set

– zero tag region is unmapped

● efficient return

– exploit call/return prediction in modern processors



9

Rewriting Example



10

Verification

● compilation and rewriting are performed by untrusted 
producer

● safety policy is enforced by a separate verification tool

– should be dependable (i.e. small)

– check security properties

● jumps never outside its code region
● writes never outside its data region

– not generally decidable

● be conservative: allow false negatives but no false 
positives



11

Prototype

● rewriting tool

– text processing tool

● 720 LOC
● operates on input to gas

– one reserved register to hold the sandboxed address for 
both data and code regions

– 64k guard regions

● verifier (2 versions)

– text processing (700 LOC)

– integrated in the object loader

● check 2.7MB rewritten gcc in half a second



12

Performance Evaluation



13

Size Inflation



14

Application Case Study: VXA



15

Formal Analysis

● ACL2 proof for verificator

● “if the verifier approves the rewritten code, then for any 
inputs, execution of the code will contineu forever without 
performing an unsafe operation”


