
Microkernels Meet Recursive Virtual
Machines

Bryan Ford, Mike Hibler, et. al

Presented by Neal H. Walfield

Jan. 17, 2007



Research Goals
I Identify fundamental properties for efficient recursive

virtualization



Goals
I Modularity
I Flexibility
I Extensibility
I Efficiency



Microkernels and VMs
I Horizontal vs vertical decomposition



VMs
I Virtualize existing hardware interface
I Minimize divergence from underlying architecture
I Support naïve OSes
I Bad at stacking



RVMs
I Not faithful to an existing hardware interface
I New architecture

I Stacking - nested process model
I Capabilities
I Selective interposition
I Better abstractions (file handles vs I/O registers)
I Services don’t need to be adapted to multidomain case

I Advantages
I Short circuit hierarchy traversal via capabilities
I Only interfere where required
I Eliminate non-relevant code (e.g., paging code)



RVMs
I Not faithful to an existing hardware interface
I New architecture

I Stacking - nested process model
I Capabilities
I Selective interposition
I Better abstractions (file handles vs I/O registers)
I Services don’t need to be adapted to multidomain case

I Advantages
I Short circuit hierarchy traversal via capabilities
I Only interfere where required
I Eliminate non-relevant code (e.g., paging code)



Services

I Paging
I Checkpointing
I Multi-process

environment
I Reference monitors
I Debugging and

tracing

emacs

grepls

bash

pager

multi−process



Necessary Properties
I State Encapsulation

I Entire state of child available to parent
I Border Control

I All external communication passes via border
I Reference monitors



State Encapsulation
I Hierarchical resource management - easier to cleanup
I State is often hidden in kernel

I Long running syscalls
I Update visible registers
I Call appears as a Receive after send phase

I Reference relativity
I Avoid absolute addresses – especially for internal objects
I Use a naming context
I Important for migration and check pointing



Fluke
I Basic instruction set

I Single implementation
I Microkernel

I Common API
I Independently implementable
I Interposable



Evaluation
I System can run gcc, etc.
I Each layer represents a 0% to 30% slowdown



Questions
I Where are the file systems? Like a multi-server system?
I If servers get memory from clients, what is the strategy to

protect from abuse.
I How is memory dynamically reallocated (what does

revocation look like?)


