Microkernels Meet Recursive Virtual Machines Bryan Ford, Mike Hibler, et. al

Presented by Neal H. Walfield

Jan. 17, 2007

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Research Goals

 Identify fundamental properties for efficient recursive virtualization

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Goals

- Modularity
- Flexibility
- Extensibility

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Efficiency

Microkernels and VMs

Horizontal vs vertical decomposition

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

VMs

- Virtualize existing hardware interface
- Minimize divergence from underlying architecture

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Support naïve OSes
- Bad at stacking

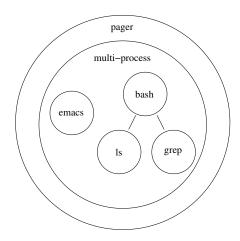
RVMs

- Not faithful to an existing hardware interface
- New architecture
 - Stacking nested process model
 - Capabilities
 - Selective interposition
 - Better abstractions (file handles vs I/O registers)
 - Services don't need to be adapted to multidomain case

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Advantages
 - Short circuit hierarchy traversal via capabilities
 - Only interfere where required
 - Eliminate non-relevant code (e.g., paging code)

RVMs


- Not faithful to an existing hardware interface
- New architecture
 - Stacking nested process model
 - Capabilities
 - Selective interposition
 - Better abstractions (file handles vs I/O registers)
 - Services don't need to be adapted to multidomain case

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Advantages
 - Short circuit hierarchy traversal via capabilities
 - Only interfere where required
 - Eliminate non-relevant code (e.g., paging code)

Services

- Paging
- Checkpointing
- Multi-process environment
- Reference monitors
- Debugging and tracing

Necessary Properties

- State Encapsulation
 - Entire state of child available to parent
- Border Control
 - All external communication passes via border

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Reference monitors

State Encapsulation

- Hierarchical resource management easier to cleanup
- State is often hidden in kernel
 - Long running syscalls
 - Update visible registers
 - Call appears as a Receive after send phase
- Reference relativity
 - Avoid absolute addresses especially for internal objects

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Use a naming context
- Important for migration and check pointing

Fluke

- Basic instruction set
 - Single implementation
 - Microkernel
- Common API
 - Independently implementable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Interposable

Evaluation

- System can run gcc, etc.
- Each layer represents a 0% to 30% slowdown

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Questions

- Where are the file systems? Like a multi-server system?
- If servers get memory from clients, what is the strategy to protect from abuse.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 How is memory dynamically reallocated (what does revocation look like?)