Paper Reading Group

User Interaction
for Secure S

February 7, 2007

Motivation

Security problems:

Often viewed as software errors:

Buffer overruns
Race conditions
Weak crypto systems

Extended view in this paper:

Correct use of software is equally important

User interfaces and usability are critical for
security

7

Carsten Weinhold - TU Dresden 2

“A computer is secure if /m /u o
o At

and its software to be /

(Defi

10 Design Principl /

User and User Age

User:

Person sitting in front

User Agent:

Local Co
Internet:

Path of Least Resistance

Principle of Least Resistance:

“Users do not care about security, they want
to do their work efficiently”

Path of Least Resistance

Hints:

1) Secure default settings (“do nothing™)

2) Indicate how to use the interface (“Perceived
affordances”)

3) Secure way must not be inconvenient (provi
payoff if inconvenience cannot be avoide

7

Carsten Weinhold - TU Dresden 6

Objects, Actors, and Acti

Objects:

Files, data records, ...

Actors:
Applications
Other users

Actions:

cartn waerais - uorscen R

S———

Aggregation and Appropriate
Boundaries

Principle of Appropriate Boundaries:

Aggregate Actions/Actors in units that the
user actually cares about

Make boundaries relevant to security visible
(e.g., applications)

Example: Granting authorities:
Application spawns multiple helper proc
Does the user have to grant authoriti
each individual process?

Carsten Weinhold - TU Dresden 9

7

10 Design Principl /

Actor-Ability State

The user's model of the syste

Actors: { A,
Potential abilities:

Real abilities:
Actor-Ability State:

No-surprise con

Explicit Authorization

Principle of Explicit Authorization:

Derived from “principle of least privilege”

User can extend Ai's real abilities Ri

Example: Opening files
Application needs authorization to open a file

Grant authorization through system interface:
Choose the file in the File-open dialog
Drag'n'drop

7

Carsten Weinhold - TU Dresden 12

Visibility

Principle of Visibility:

Actor-ablility state represents the user's

knowledge about the security of the system
However, this view may be incomplete

Make past granting actions visible to the user
Inspect:

Holder of authority
Object

7

Carsten Weinhold - TU Dresden 13

Revocability

Principle of Revocability:
Keep actor-ablility state manageable

Accommodate for error situations:

The user accidentally granted authorities

The user has been fooled about the true nature
of an application

A security bug is identified

7

Carsten Weinhold - TU Dresden 14

Expected Ability

Principle of Expected Ability:

The user has an expectation of his future
abilities that can have security implications

Example: Ability to revoke authorities

Example: Ability to discard data

The user keeps records of private data th
he wishes to delete at a later time /
7

Carsten Weinhold - TU Dresden 15

10 Design Principl /

Trusted Path

Principle of Trusted Path:
Unspoofable and incorruptible channel to
interact with the system

Example:
Authorities may only be edited through a
trustworthy user interface

Example:

Windows Login Dialog: Ctrl-Alt-Del
g g Z

Carsten Weinhold - TU Dresden 17

Identifiability

Principle of Identifiability:

Actions and objects must identifiable

Continuity:
“The same thing should appear the same”

Discriminability:
“Different things should appear different”

The user must perceive things different!

7

Carsten Weinhold - TU Dresden 18

& & s —
| < > || x| @hup://

[0 Apple (19)v Amaz

N

navigation
Main Page
Community portal
Current events
Recent changes
Random page
Help

Donations

Identifiability (2)

Protocols — OSWiki

Um diese Seite anzuzeigen, missen Sie sich am
Bereich ,staff section" auf os.inf.tu-dresden.de
anmelden.

Ihr Kennwort wird in Klartext Ubertragen.

Mame:

Kennwort:

" Dieses Kennwaort in meinem Schliisselbund sichern

| Abbrechen) @

Carsten Weinhold - TU Dresden

ioogle

B

Log in / create account

R

P

19

Expressiveness

Principle of Expressiveness:
The user specifies security policies
according to his model of the system

To be useful, the system must allow the

following:
The user can safely specify a security policy
The user can express the security policy he
wants

Example: Standard Unix file-system ACL
4 L

Carsten Weinhold - TU Dresden 20

Clarity

Principle of Clarity:

Security policies must

be expressible clearly: == moE

gﬁl' JavaScript or a Java applet from 'Bogus Appletwriters
fi i L Incorporated ' iz requesting additional privleges.

Granting the following iz high risk:

BT N N

[Femember thiz decision

Identity verified by WeriSign, Inc.

Certificate

/. POV IIIIIIII &
Carsten Weinhold - TU Dresden 21

Summary

To be able to use a system safely, the user must
have confidence in the following statements:

Things don't become unsafe all by themselves. (Explicit Authorization)

| can know whether things are safe. (Visibility)

| can make things safer. (Revocability)

| don't choose to make things unsafe. (Path of Least
Resistance)

| know what | can do with the system. (Expected Ability)

| can distinguish the things that matter to me. (Appropriate
Boundaries)

| can tell the system what | want. (Expressiveness)

| know what I'm telling the system to do. (Clarity)

The system protects me from being fooled. (Identifiability,
Trusted Pat %

Carsten Weinhold - TU Dresden 22

Points of Discussi

