
Resource Containers
Gaurav Banga	 Peter Druschel	 Jeffrey C. Mogul

Presented by Michael Roitzsch



Observations



Observations

• mismatch: OS‘es resource management 
design assumptions and behavior of 
modern server applications



Observations

• mismatch: OS‘es resource management 
design assumptions and behavior of 
modern server applications

• no control over resource consumption by 
the kernel on behalf of the application



Observations

• mismatch: OS‘es resource management 
design assumptions and behavior of 
modern server applications

• no control over resource consumption by 
the kernel on behalf of the application

• difficulty to express priority policies, QoS



Observations

• mismatch: OS‘es resource management 
design assumptions and behavior of 
modern server applications

• no control over resource consumption by 
the kernel on behalf of the application

• difficulty to express priority policies, QoS

• denial of service



Web Server Example



Web Server Example

HTTP Connection 
Handling

process forking

pre-forked processes

event driven

multi-threaded



Web Server Example

HTTP Connection 
Handling

process forking

pre-forked processes

event driven

multi-threaded

CGI Handling

CGI process forking

persistent CGI 
processes

library based



Current Resource 
Management

User
Kernel



Current Resource 
Management

User
Kernel



Current Resource 
Management

User
Kernel



Current Resource 
Management

User
Kernel



Current Resource 
Management

User
Kernel



Current Resource 
Management

User
Kernel



Dual Use of Processes

Process



Dual Use of Processes

Process

Protection Domain



Dual Use of Processes

Process

Protection Domain

Isolation



Dual Use of Processes

Process

Protection Domain Resource Principal

Isolation



Dual Use of Processes

Process

Protection Domain Resource Principal

Isolation Accounting



Dual Use of Processes

Protection Domain Resource Principal

Isolation Accounting

Process Resource Container



Resource Containers



Resource Containers

• abstract operating system entity



Resource Containers

• abstract operating system entity

• contains resources used for an activity, 
kernel accounts against resource containers



Resource Containers

• abstract operating system entity

• contains resources used for an activity, 
kernel accounts against resource containers

• arbitrary relationships between protection 
domains, threads, resource containers



Resource Containers

• abstract operating system entity

• contains resources used for an activity, 
kernel accounts against resource containers

• arbitrary relationships between protection 
domains, threads, resource containers

• mechanism to be used with resource 
management policy



Resource Containers

• abstract operating system entity

• contains resources used for an activity, 
kernel accounts against resource containers

• arbitrary relationships between protection 
domains, threads, resource containers

• mechanism to be used with resource 
management policy

• form a hierarchy



Operations



Operations
• creating a new container

• set a container‘s parent

• container release

• sharing containers 
between processes

• container attributes

• container usage 
information

• binding a thread to a 
container

• reset the scheduler 
binding

• binding a socket or a file 
to a container



Multi-Threaded Server

User
Kernel



Multi-Threaded Server

User
Kernel

TCP/IP



Event-Driven Server

User
Kernel



Event-Driven Server

User
Kernel



Event-Driven Server

User
Kernel



Without containers
With containers/select()

With containers/new event API

Number of concurrent low-priority clients

R
es
p
o
n
se
ti
m
e
(m
s)

35302520151050

9

8

7

6

5

4

3

2

1

0

Fig. 11: How varies with load.

The dotted curve shows how ( ) varies when using

the unmodified kernel. The application attempted to give

preference to requests from the high-priority client by

handling events on its socket, returned by select(),

before events on other sockets. The figures shows that,

despite this preferential treatment, ( ) increases sharply

when there are enough low-priority clients to saturate the

server. This happens because most of request processing

occurs inside the kernel, and so is uncontrolled.

The dashed and the solid curve in Figure 11 shows

the effect of using resource containers. Here, the server

uses two containers, with different numeric priorities, as-

signing the high-priority requests to one container, and

the low-priority requests to another. The dashed curve,

labeled “With containers/select()”, shows the effect

of resource containers with the application still using

select() to wait for events. increases much

less than in the original system. Resource containers al-

low the application to control resource consumption at

almost all levels of the system. For example, TCP/IP

processing, which is performed in FIFO order in classi-

cal systems, is now performed in priority order.

The remaining increase in response time is due to some

known scalability problems of the select() system

call [5, 6]. These problems can be alleviated by a smart

implementation described in [6], but some inefficiency

is inherent to the semantics of the select() API. The

problem is that each call to select()must specify, via

a bitmap, the complete set of descriptors that the appli-

cation is interested in. The kernel must check the status

of each descriptor in this set. This causes overhead linear

in the number of descriptors handled by the application.

The solid curve, labeled “With containers/new event

API”, shows the variation in when the server uses

a new scalable event API, described in [5]. In this

case, increases very slightly as the number of low-

priority clients increases. The remaining slight increase

in reflects the cost of packet-arrival interrupts from

low-priority connections. The kernel must handle these

interrupts and invoke a packet filter to determine the pri-

ority of the packet.

5.6 Controlling resource usage of CGI processing

Section 2 described how requests for dynamic re-

sources are typically handled by processes other than

the main Web server process. In a system that time-

shares the CPU equally between processes, these back-

end (CGI) processes may gain an excessive share of the

CPU, which reduces the throughput for static documents.

We constructed an experiment to show how a server can

use resource containers to explicitly control the CPU

costs of CGI processes.

We measured the throughput of our Web server (for

cached, 1 KB static documents) while increasing the num-

ber of concurrent requests for a dynamic (CGI) resource.

Each CGI request process consumed about 2 seconds of

CPU time. These results are shown in the curve labeled

“Unmodified System” in Figure 12.

As the number of concurrent CGI requests increases,

the CPU is shared among a larger set of processes, and

the main Web server’s share decreases; this sharply re-

duces the throughput for static documents. For exam-

ple, with only 4 concurrent CGI requests, the Web server

itself gets only 40% of the CPU, and the static-request

throughput drops to 44% of its maximum.

The main server process actually gets slightlymore of

the CPU than does each CGI process, because of misac-

counting for network processing. This is shown in Fig-

ure 13, which plots the total CPU time used by all CGI

processes.

In Figures 12 and 13, the curves labeled “LRP Sys-

tem” show the performance of an LRP version of Digital

UNIX. LRP fixes the misaccounting, so the main server

process shares the CPU equally with other processes.

This further reduces the throughput for static documents.

To measure how well resource containers allow fine-

grained control over CGI processes, we modified our

server so that each container created for a CGI request

was the child of a specific “CGI-parent” container. This

CGI-parent container was restricted to a maximum frac-

tion of the CPU (recall that this restriction includes its

children). In Figures 12 and 13, the curves labeled “RC

System 1” show the performance when the CGI-parent

container was limited to 30% of the CPU; the curves la-

beled “RC System 2” correspond to a limit of 10%.

Figure 13 shows that the CPU limits are enforced al-

most exactly. Figure 12 shows that this effectively forms

a “resource sand-box” around the CGI processes, and so

the throughput of static requests remains almost constant

as the number of concurrent CGI requests increases from

1 to 5.

Note that the Web server could additionally impose



RC System 2
RC System 1
LRP System

Unmodified System

Number of concurrent CGI requests

H
T
T
P
T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/s
ec
)

543210

3000

2500

2000

1500

1000

500

0

Fig. 12: Throughput with competing CGI requests.

RC System 2
RC System 1
LRP System

Unmodified System

Number of concurrent CGI requests

C
P
U
sh
ar
e
o
f
C
G
I
p
ro
ce
ss
in
g

543210

100

80

60

40

20

0

Fig. 13: CPU share of CGI requests.

relative priorities among the CGI requests, by adjusting

the resource limits on each corresponding container.

5.7 Immunity against SYN-flooding

We constructed an experiment to determine if resource

containers, combined with the filtering mechanism de-

scribed in Section 4.7, allow a server to protect against

denial-of-service attacks using ”SYN-flooding.” In this

experiment, a set of “malicious” clients sent bogus SYN

packets to the server’s HTTP port, at a high rate. We then

measured the server’s throughput for requests from well-

behaved clients (for a cached, 1 KB static document).

Unmodified System
With Resource Containers

SYN-Flood Rate (1000s of SYNs/sec)

H
T
T
P
T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/s
ec
)

706050403020100

3000

2500

2000

1500

1000

500

0

Fig. 14: Server behavior under SYN-flooding attack.

Figure 14 shows that the throughput of the unmodified

system falls drastically as the SYN-flood rate increases,

and is effectively zero at about 10,000 SYNs/sec. We

modified the kernel to notify the application when it

drops a SYN (due to queue overflow). We also modi-

fied our server to isolate the misbehaving client(s) to a

low-priority listen-socket, using the filter mechanism de-

scribed in Section 4.8. With these modifications, even

at 70,000 SYNs/sec., the useful throughput remains at

about 73% of maximum. This slight degradation results

from the interrupt overhead of the SYN flood. Note that

LRP, in contrast to our system, cannot protect against

such SYN floods; it cannot filter traffic to a given port

based on the source address.

5.8 Isolation of virtual servers

Section 5.6 shows how resource containers allow “re-

source sand-boxes” to be put around CGI processes. This

approach can be used in other applications, such as con-

trolling the total resource usage of guest servers in a Rent-

A-Server [45] environment.

In current operating systems, each guest server, which

might consist of many processes, can appear to the sys-

tem as numerous resource principals. The number may

vary dynamically, and has little relation to how much

CPU time the server’s administrator wishes to allow each

guest server.

We performed an informal experiment to show how

resource containers solve this problem. We created 3

top-level containers and restricted their CPU consump-

tion to fixed CPU shares. Each container was then used

as the root container for a guest server. Subsequently,

three sets of clients placed varying request loads on these

servers; the requests included CGI resources. We ob-

served that the total CPU time consumed by each guest

server exactly matched its allocation. Moreover, because

the resource container hierarchy is recursive, each guest

server can itself control how its allocated resources are

re-divided among competing connections.



RC System 2
RC System 1
LRP System

Unmodified System

Number of concurrent CGI requests

H
T
T
P
T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/s
ec
)

543210

3000

2500

2000

1500

1000

500

0

Fig. 12: Throughput with competing CGI requests.

RC System 2
RC System 1
LRP System

Unmodified System

Number of concurrent CGI requests

C
P
U
sh
ar
e
o
f
C
G
I
p
ro
ce
ss
in
g

543210

100

80

60

40

20

0

Fig. 13: CPU share of CGI requests.

relative priorities among the CGI requests, by adjusting

the resource limits on each corresponding container.

5.7 Immunity against SYN-flooding

We constructed an experiment to determine if resource

containers, combined with the filtering mechanism de-

scribed in Section 4.7, allow a server to protect against

denial-of-service attacks using ”SYN-flooding.” In this

experiment, a set of “malicious” clients sent bogus SYN

packets to the server’s HTTP port, at a high rate. We then

measured the server’s throughput for requests from well-

behaved clients (for a cached, 1 KB static document).

Unmodified System
With Resource Containers

SYN-Flood Rate (1000s of SYNs/sec)

H
T
T
P
T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/s
ec
)

706050403020100

3000

2500

2000

1500

1000

500

0

Fig. 14: Server behavior under SYN-flooding attack.

Figure 14 shows that the throughput of the unmodified

system falls drastically as the SYN-flood rate increases,

and is effectively zero at about 10,000 SYNs/sec. We

modified the kernel to notify the application when it

drops a SYN (due to queue overflow). We also modi-

fied our server to isolate the misbehaving client(s) to a

low-priority listen-socket, using the filter mechanism de-

scribed in Section 4.8. With these modifications, even

at 70,000 SYNs/sec., the useful throughput remains at

about 73% of maximum. This slight degradation results

from the interrupt overhead of the SYN flood. Note that

LRP, in contrast to our system, cannot protect against

such SYN floods; it cannot filter traffic to a given port

based on the source address.

5.8 Isolation of virtual servers

Section 5.6 shows how resource containers allow “re-

source sand-boxes” to be put around CGI processes. This

approach can be used in other applications, such as con-

trolling the total resource usage of guest servers in a Rent-

A-Server [45] environment.

In current operating systems, each guest server, which

might consist of many processes, can appear to the sys-

tem as numerous resource principals. The number may

vary dynamically, and has little relation to how much

CPU time the server’s administrator wishes to allow each

guest server.

We performed an informal experiment to show how

resource containers solve this problem. We created 3

top-level containers and restricted their CPU consump-

tion to fixed CPU shares. Each container was then used

as the root container for a guest server. Subsequently,

three sets of clients placed varying request loads on these

servers; the requests included CGI resources. We ob-

served that the total CPU time consumed by each guest

server exactly matched its allocation. Moreover, because

the resource container hierarchy is recursive, each guest

server can itself control how its allocated resources are

re-divided among competing connections.



RC System 2
RC System 1
LRP System

Unmodified System

Number of concurrent CGI requests

H
T
T
P
T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/s
ec
)

543210

3000

2500

2000

1500

1000

500

0

Fig. 12: Throughput with competing CGI requests.

RC System 2
RC System 1
LRP System

Unmodified System

Number of concurrent CGI requests

C
P
U
sh
ar
e
o
f
C
G
I
p
ro
ce
ss
in
g

543210

100

80

60

40

20

0

Fig. 13: CPU share of CGI requests.

relative priorities among the CGI requests, by adjusting

the resource limits on each corresponding container.

5.7 Immunity against SYN-flooding

We constructed an experiment to determine if resource

containers, combined with the filtering mechanism de-

scribed in Section 4.7, allow a server to protect against

denial-of-service attacks using ”SYN-flooding.” In this

experiment, a set of “malicious” clients sent bogus SYN

packets to the server’s HTTP port, at a high rate. We then

measured the server’s throughput for requests from well-

behaved clients (for a cached, 1 KB static document).

Unmodified System
With Resource Containers

SYN-Flood Rate (1000s of SYNs/sec)

H
T
T
P
T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/s
ec
)

706050403020100

3000

2500

2000

1500

1000

500

0

Fig. 14: Server behavior under SYN-flooding attack.

Figure 14 shows that the throughput of the unmodified

system falls drastically as the SYN-flood rate increases,

and is effectively zero at about 10,000 SYNs/sec. We

modified the kernel to notify the application when it

drops a SYN (due to queue overflow). We also modi-

fied our server to isolate the misbehaving client(s) to a

low-priority listen-socket, using the filter mechanism de-

scribed in Section 4.8. With these modifications, even

at 70,000 SYNs/sec., the useful throughput remains at

about 73% of maximum. This slight degradation results

from the interrupt overhead of the SYN flood. Note that

LRP, in contrast to our system, cannot protect against

such SYN floods; it cannot filter traffic to a given port

based on the source address.

5.8 Isolation of virtual servers

Section 5.6 shows how resource containers allow “re-

source sand-boxes” to be put around CGI processes. This

approach can be used in other applications, such as con-

trolling the total resource usage of guest servers in a Rent-

A-Server [45] environment.

In current operating systems, each guest server, which

might consist of many processes, can appear to the sys-

tem as numerous resource principals. The number may

vary dynamically, and has little relation to how much

CPU time the server’s administrator wishes to allow each

guest server.

We performed an informal experiment to show how

resource containers solve this problem. We created 3

top-level containers and restricted their CPU consump-

tion to fixed CPU shares. Each container was then used

as the root container for a guest server. Subsequently,

three sets of clients placed varying request loads on these

servers; the requests included CGI resources. We ob-

served that the total CPU time consumed by each guest

server exactly matched its allocation. Moreover, because

the resource container hierarchy is recursive, each guest

server can itself control how its allocated resources are

re-divided among competing connections.



Discussion



Discussion

• How do microkernels solve such problems?



Discussion

• How do microkernels solve such problems?

• Why can a container be reparented or 
even made parent-less?



Discussion

• How do microkernels solve such problems?

• Why can a container be reparented or 
even made parent-less?

• How to account kernel resource 
consumption properly?



Discussion

• How do microkernels solve such problems?

• Why can a container be reparented or 
even made parent-less?

• How to account kernel resource 
consumption properly?

• Is the motivation for the problem still valid?


