Dynamic Storage Allocation TLSF Remarks / Open Questions
0000000 000000 (o]
00000000

TLSF: a New Dynamic Memory Allocator for
Real-Time Systems

M. Masmano, I. Ripoll, A. Crespo, and J. Real
Universidad Politécnica de Valencia, Spain

2004

Dynamic Storage Allocation
9000000

Motivation

e Dynamic storage allocation (DSA): well studied and
analysed issue for most application types

¢ Most DSA algorithms: good average response times, good
overall performance

¢ In real-time scenarios rarely used: worst-case response
time too high

Dynamic Storage Allocation
O0e00000

"Developers of real-time systems avoid the use of dynamic
memory management because they fear that the worst-case
execution time of dynamic memory allocation routines is not
bounded or is bounded with a too important bound"

(I. Puaut, 2002)

Dynamic Storage Allocation Remarks / Open Questions

00®@0000

Real-Time Requirements for DSA
timing constraints

Real-time systems: schedulability analysis
> determine the worst-case execution time

> application schedulable with it's timing constraints?

Therefore:
e Bounded response time
e Fast response time
e Memory requests need to be always satisfied

Dynamic Storage Allocation
000e000

Fragmentation
memory constraints

Real-time systems: run for large periods of time
— memory fragmentation problem

Memory exhaustion

e Application requires more memory than available
e DSA algorithm is unable to reuse memory that is free

¢ Internal fragmentation (metadata and alignment, e.g. 10
byte memory + 8 byte header + 4/8 byte alignment)
e External fragmentation (many small pieces)

Dynamic Storage Allocation
0000e00

DSA Algorithms

e Sequential Fit : single or double linked list (First-Fit,
Next-Fit, Best-Fit)

e Segregated Free Lists : array of lists with blocks of free
memory of the same size (Douglas Lea DSA)

e Buddy Systems : efficient split and merge operations
(Binary Buddies, Fibonacci Buddies)
— good timing behaviour, large fragmentation

¢ Indexed Fit : balanced tree or Cartesian tree to index the
free memory blocks (Stephenson’s "Fast-Fit" allocator)

e Bitmap Fit : a bitmap marks which blocks are busy or free
(Half-Fit algorithm)
data structures are small (32 bit) — less cache misses

Dynamic Storage Allocation
00000e0

DSA Operational Model

DSA algorithm
e keeps track of which blocks are in use and which are free

e must provide at least two operations (malloc / free)

Typical management of free memory blocks
e Initially a single, large block of free memory
e First allocation requests: take blocks from the initial pool

e A previously allocated block is released: merge with other
free block if possible
e New allocation requests: from free blocks or from the pool

Dynamic Storage Allocation
O00000e

DSA Operational Model

Basic operations to manage free blocks
¢ Insert a free block (malloc/free)
Search for a free block of a given size or larger (malloc)
Search for a block adjacent to another (free)
Remove a free block (malloc/free)
Split and merge

TLSF
©00000

Two-Level Segregated Fit - Design

Targets embedded real-time systems
(trusted environment, small amount of physical memory
available, no MMU)

Immediate coalescing

Splitting threshold (16 byte)
Good-fit strategy

No reallocation

Same strategy for all block sizes
Memory is not cleaned-up

TLSF
0®0000

Two-Level Segregated Fit - Example 1

-
: Free }i' .

| Blocks I Second Level Directory TTT o070 7070
i il O[O0 [TJO]O0]O0]1
l I 0 a0 00T
' | : o 7y

a1 Al
(13523031 | [320.351] [fPss 3\'9] [255..287]
/l‘/r H

[480.511] ‘ [448.479]

416 447]|[

|[‘4D 255] | [224..239] | [208 ‘,3] 176.191] [128.143]

10‘ A’ﬁ]

1160 r,vq

[144 159]

[bu 87] | 472.79]

[10171‘“1 119] [64.71]

[104 111]

[96 103]

[88.95]

. | [60. 64]

[56.59] ‘ [52.55] | [48.51] ‘ [44 47] ‘ [40 4;] [36 39] | [32 35]
6 b) 4 2 1

st st s e s e i s e e i e e e i e e et e — s

memory used to manage blocks
e maximum pool of 4 GB (FLI=32, SLI=5) — 3624 bytes
e maximum pool of 32 MB (FLI=25, SLI=5) — 2856 bytes

@

TLSF
00@000

First Level Index (FLI) / Second Level Index (SLI)

Array of lists, each holding free blocks within a size class
Each array of lists has an associated bitmap

First-level: divides free blocks in classes (16, 32, 64, ...)
Second-level: sub-divides each first-level class linearly

151413121110

size = 4604 =0 0 6 i

8
654 210
1 O 1004

Ow

1

)
I
)

SLI = 4 = bits 4-7

SLI =4 = 16 sub classes

class 8 : 256 ... 512

12" sub class : 256 + 12 x (256,/16) = 448 ... 464

TLSF
000®00

Two-Level Segregated Fit - Example 2

First ! OLIOLL0000 |

level [N [Z8] 7 N |

Secgng level _ _ _ _|_ _ _ _ o o o o ____
" v ,
248 2532 | [2+16. [26.. :,

L 2%64] 26448 254321 25416[

[P A o i e A N e T
sttt s el (it il ol

TLSF
0000@0

TLSF Data Structures

typedef struct TLSF_struct {
/1l the TLSF' s structure signature
u3d2_ t tlsf_signature;

/1 the first-1level bitmp
/1 This array should have a size of REAL_FLI bits
u3d2_t fl _bitmap;

/1 the second-1|evel bitnmap
u32_t sl _bitmap[REAL_FLI];

bhdr _t +matri x[REAL_FLI][MAX_SLI];
}otlsf t;

Dynamic Storage Allocation TLSF Remarks / Open Questions
(o]

0000000 00000e
00000000

TLSF Block Header

0 23 15 i L kL
T e
Prev_Phys_Block Free block
Next free
Prev free
21 23 1 1o et

15
SLJFe

Prev_Phys Block

T = Last physical block
F = Free block

Dynamic Storage Allocation TLSF Remarks / Open Questions

0000000 000000 (o]
00000000

Statistics

e AMD Duron 807 MHz
e rdtsc before/after alloc()/free()
e libc vs. buddy slab vs. tlsf

Dynamic Storage Allocation TLSF Remarks / Open Questions
0000000 000000 (o]
0®@000000

Statistics : malloc 1-1024 bytes

malloc 1-1024 bytes

Frequency

250

200

150

100

1200

chunk size/bytes

iy
cycles Q

viewt 120.000. F0.0000 scalgs 1.00000. 1.00000

Dynamic Storage Allocation TLSF Remarks / Open Questions
(o]

0000000 000000
00800000

Statistics : malloc 1-1024 bytes

malloc 1-1024 bytes

Libe
buddy <lab
tlsf

Frequency

300
250
200
150

100

1200

chunk size/bytes

o *

viewt 120.000. F0.0000 scalgs 1.00000. 1.00000

Dynamic Qromqﬂ Allocation Remarks / Open Questions

Statistics : malloc 1-1024 bytes

malloc 1-1024 bytes

libe ——
buddy <lab
tlsf

‘ﬁ“iim
\H'

iTﬂ‘“ \

\"w !)

250

200

150

100

50

chunk size/bytes

viewt 120.000. F0.0000 scalgs 1.00000. 1.00000

Dynamic Storage Allocation TLSF Remarks / Open Questions
0000000 000000 (o]
00008000

Statistics : free 1-1024 bytes

free 1-1024 bytes

Libe
buddy <lab
tlsf

Frequency

200
200
00
B0
500
400
300
200
100
1200

chunk size/bytes

e
o *

viewt 120.000. F0.0000 scalgs 1.00000. 1.00000

Dynamic Storage Allocation TLSF Remarks / Open Questions
(o]

Statistics : malloc 1-1024 distribution
. . AT .HH\H\ I

20000 30000 40000 50000 80000 70000 @

cycles

E054 RO, Z.EG5FZZ

TLSF

00000080

Statistics : malloc 1-1024 distribution

mallos 1-1024 bytes

10000 T T T T T

Libe
buddy slab
tlsf
1000 = -
3 100 | B
£
10 E

1 1 A L 1 L
0 1000 2000 3000 4000 5000 8000 7000 @

cycles
O 4RO T EEFIZ

Dynamic Storage Allocation
0000000

TLSF

000000
0000000e

Statistics : free 1-1024 distribution

free 1-1024 bytes

Remarks / Open Questions
(o]

10000 r

1000

5
2

freqency

o 1000

1004 TR 7 AGZZR

2000

2000

4000

Mﬁ

" like
buddy slab
tlsf

5000 EO00 000 8000

cucles

000

10000

Remarks / Open Questions
L

Remarks / Open Questions

e Synthetic workload? ("Dynamic Storage Allocation: A
Survey and Critical Review")

¢ Do real-time applications really need such a general
purpose DSA?

e Usable for non-real-time applications? (higher response
time vs. low upper bound)

	Dynamic Storage Allocation
	

	TLSF
	
	

	Remarks / Open Questions
	

