
Dynamic Storage Allocation TLSF Remarks / Open Questions

TLSF: a New Dynamic Memory Allocator for
Real-Time Systems

M. Masmano, I. Ripoll, A. Crespo, and J. Real
Universidad Politécnica de Valencia, Spain

2004



Dynamic Storage Allocation TLSF Remarks / Open Questions

Motivation

• Dynamic storage allocation (DSA): well studied and
analysed issue for most application types

• Most DSA algorithms: good average response times, good
overall performance

• In real-time scenarios rarely used: worst-case response
time too high



Dynamic Storage Allocation TLSF Remarks / Open Questions

"Developers of real-time systems avoid the use of dynamic
memory management because they fear that the worst-case
execution time of dynamic memory allocation routines is not
bounded or is bounded with a too important bound"

(I. Puaut, 2002)



Dynamic Storage Allocation TLSF Remarks / Open Questions

Real-Time Requirements for DSA
timing constraints

Real-time systems: schedulability analysis

⊲ determine the worst-case execution time

⊲ application schedulable with it’s timing constraints?

Therefore:

• Bounded response time

• Fast response time

• Memory requests need to be always satisfied



Dynamic Storage Allocation TLSF Remarks / Open Questions

Fragmentation
memory constraints

Real-time systems: run for large periods of time
→ memory fragmentation problem

Memory exhaustion

• Application requires more memory than available
• DSA algorithm is unable to reuse memory that is free

• Internal fragmentation (metadata and alignment, e.g. 10
byte memory + 8 byte header + 4/8 byte alignment)

• External fragmentation (many small pieces)



Dynamic Storage Allocation TLSF Remarks / Open Questions

DSA Algorithms

• Sequential Fit : single or double linked list (First-Fit,
Next-Fit, Best-Fit)

• Segregated Free Lists : array of lists with blocks of free
memory of the same size (Douglas Lea DSA)

• Buddy Systems : efficient split and merge operations
(Binary Buddies, Fibonacci Buddies)
→ good timing behaviour, large fragmentation

• Indexed Fit : balanced tree or Cartesian tree to index the
free memory blocks (Stephenson’s "Fast-Fit" allocator)

• Bitmap Fit : a bitmap marks which blocks are busy or free
(Half-Fit algorithm)
data structures are small (32 bit) → less cache misses



Dynamic Storage Allocation TLSF Remarks / Open Questions

DSA Operational Model

DSA algorithm

• keeps track of which blocks are in use and which are free

• must provide at least two operations (malloc / free)

Typical management of free memory blocks

• Initially a single, large block of free memory

• First allocation requests: take blocks from the initial pool

• A previously allocated block is released: merge with other
free block if possible

• New allocation requests: from free blocks or from the pool



Dynamic Storage Allocation TLSF Remarks / Open Questions

DSA Operational Model

Basic operations to manage free blocks

• Insert a free block (malloc/free)

• Search for a free block of a given size or larger (malloc)

• Search for a block adjacent to another (free)

• Remove a free block (malloc/free)

• Split and merge



Dynamic Storage Allocation TLSF Remarks / Open Questions

Two-Level Segregated Fit - Design

• Targets embedded real-time systems
(trusted environment, small amount of physical memory
available, no MMU)

• Immediate coalescing

• Splitting threshold (16 byte)

• Good-fit strategy

• No reallocation

• Same strategy for all block sizes

• Memory is not cleaned-up



Dynamic Storage Allocation TLSF Remarks / Open Questions

Two-Level Segregated Fit - Example 1

memory used to manage blocks

• maximum pool of 4 GB (FLI=32, SLI=5) → 3624 bytes

• maximum pool of 32 MB (FLI=25, SLI=5) → 2856 bytes



Dynamic Storage Allocation TLSF Remarks / Open Questions

First Level Index (FLI) / Second Level Index (SLI)

• Array of lists, each holding free blocks within a size class

• Each array of lists has an associated bitmap

• First-level: divides free blocks in classes (16, 32, 64, ... )

• Second-level: sub-divides each first-level class linearly

SLI = 4 ⇒ bits 4-7
SLI = 4 ⇒ 16 sub classes
class 8 : 256 ... 512
12th sub class : 256 + 12 ∗ (256/16) = 448 ... 464



Dynamic Storage Allocation TLSF Remarks / Open Questions

Two-Level Segregated Fit - Example 2



Dynamic Storage Allocation TLSF Remarks / Open Questions

TLSF Data Structures

typedef struct TLSF_struct {
// the TLSF’s structure signature
u32_t tlsf_signature;

// the first-level bitmap
// This array should have a size of REAL_FLI bits
u32_t fl_bitmap;

// the second-level bitmap
u32_t sl_bitmap[REAL_FLI];

bhdr_t *matrix[REAL_FLI][MAX_SLI];
} tlsf_t;



Dynamic Storage Allocation TLSF Remarks / Open Questions

TLSF Block Header



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics

• AMD Duron 807 MHz

• rdtsc before/after alloc()/free()

• libc vs. buddy slab vs. tlsf



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics : malloc 1-1024 bytes



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics : malloc 1-1024 bytes



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics : malloc 1-1024 bytes



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics : free 1-1024 bytes



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics : malloc 1-1024 distribution



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics : malloc 1-1024 distribution



Dynamic Storage Allocation TLSF Remarks / Open Questions

Statistics : free 1-1024 distribution



Dynamic Storage Allocation TLSF Remarks / Open Questions

Remarks / Open Questions

• Synthetic workload? ("Dynamic Storage Allocation: A
Survey and Critical Review")

• Do real-time applications really need such a general
purpose DSA?

• Usable for non-real-time applications? (higher response
time vs. low upper bound)


	Dynamic Storage Allocation
	

	TLSF
	
	

	Remarks / Open Questions
	


