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Motivation

e Dynamic storage allocation (DSA): well studied and
analysed issue for most application types

¢ Most DSA algorithms: good average response times, good
overall performance

¢ In real-time scenarios rarely used: worst-case response
time too high
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"Developers of real-time systems avoid the use of dynamic
memory management because they fear that the worst-case
execution time of dynamic memory allocation routines is not
bounded or is bounded with a too important bound"

(I. Puaut, 2002)
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Real-Time Requirements for DSA
timing constraints

Real-time systems: schedulability analysis
> determine the worst-case execution time

> application schedulable with it's timing constraints?

Therefore:
e Bounded response time
e Fast response time
e Memory requests need to be always satisfied
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Fragmentation
memory constraints

Real-time systems: run for large periods of time
— memory fragmentation problem

Memory exhaustion

e Application requires more memory than available
e DSA algorithm is unable to reuse memory that is free

¢ Internal fragmentation (metadata and alignment, e.g. 10
byte memory + 8 byte header + 4/8 byte alignment)
e External fragmentation (many small pieces)
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DSA Algorithms

e Sequential Fit : single or double linked list (First-Fit,
Next-Fit, Best-Fit)

e Segregated Free Lists : array of lists with blocks of free
memory of the same size (Douglas Lea DSA)

e Buddy Systems : efficient split and merge operations
(Binary Buddies, Fibonacci Buddies)
— good timing behaviour, large fragmentation

¢ Indexed Fit : balanced tree or Cartesian tree to index the
free memory blocks (Stephenson’s "Fast-Fit" allocator)

e Bitmap Fit : a bitmap marks which blocks are busy or free
(Half-Fit algorithm)
data structures are small (32 bit) — less cache misses
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DSA Operational Model

DSA algorithm
e keeps track of which blocks are in use and which are free

e must provide at least two operations (malloc / free)

Typical management of free memory blocks
e Initially a single, large block of free memory
e First allocation requests: take blocks from the initial pool

e A previously allocated block is released: merge with other
free block if possible
e New allocation requests: from free blocks or from the pool
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DSA Operational Model

Basic operations to manage free blocks
¢ Insert a free block (malloc/free)
Search for a free block of a given size or larger (malloc)
Search for a block adjacent to another (free)
Remove a free block (malloc/free)
Split and merge
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Two-Level Segregated Fit - Design

Targets embedded real-time systems
(trusted environment, small amount of physical memory
available, no MMU)

Immediate coalescing

Splitting threshold (16 byte)
Good-fit strategy

No reallocation

Same strategy for all block sizes
Memory is not cleaned-up
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Two-Level Segregated Fit - Example 1
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First Level Index (FLI) / Second Level Index (SLI)

Array of lists, each holding free blocks within a size class
Each array of lists has an associated bitmap

First-level: divides free blocks in classes (16, 32, 64, ... )
Second-level: sub-divides each first-level class linearly
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SLI =4 = 16 sub classes

class 8 : 256 ... 512

12" sub class : 256 + 12 x (256,/16) = 448 ... 464



TLSF
000®00

Two-Level Segregated Fit - Example 2
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TLSF Data Structures

typedef struct TLSF_struct {
/1l the TLSF' s structure signature
u3d2_ t tlsf_signature;

/1 the first-1level bitmp
/1 This array should have a size of REAL_FLI bits
u3d2_t fl _bitmap;

/1 the second-1|evel bitnmap
u32_t sl _bitmap[ REAL_FLI];

bhdr _t +matri x[ REAL_FLI][ MAX_SLI];
}otlsf t;
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Statistics

e AMD Duron 807 MHz
e rdtsc before/after alloc()/free()
e libc vs. buddy slab vs. tlsf
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Statistics : malloc 1-1024 bytes
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Statistics : malloc 1-1024 bytes
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Statistics : malloc 1-1024 bytes
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Statistics : free 1-1024 bytes

free 1-1024 bytes
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Statistics : malloc 1-1024 distribution
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Statistics : malloc 1-1024 distribution
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Statistics : free 1-1024 distribution

free 1-1024 bytes
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Remarks / Open Questions

e Synthetic workload? ("Dynamic Storage Allocation: A
Survey and Critical Review")

¢ Do real-time applications really need such a general
purpose DSA?

e Usable for non-real-time applications? (higher response
time vs. low upper bound)
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