
1Carsten Weinhold - TU Dresden

Paper Reading Group

Carsten Weinhold
<weinhold@os.inf.tu-dresden.de>

TU Dresden

Secure File System Versioning
at the Block Level

Jake Wires and Michael J. Feeley, 2007

August 1, 2007

2Carsten Weinhold - TU Dresden

Motivation

“In typical file systems, valuable data
is vulnerable to being accidentally or
maliciously deleted or overwritten.”

3Carsten Weinhold - TU Dresden

Strategies to Protect Data

Two classes of data loss:
 Physical loss or malfunction of storage device
 Removal or modification after initial storage

Strategies to prevent data loss:
 Make each write redundant
 Create periodic snapshots
 Maintain a version history of all changes

4Carsten Weinhold - TU Dresden

Versioning

How to implement?
 Difficult to add to existing file systems

 OS vendors don't want to
 Increases complexity

 If part of file system, it is as vulnerable to
bugs and attacks as rest of the system

VDisk approach:
 Isolate core functionality: VDisk secure kernel

running in its own virtual machine
 Implement more complex functionality and

recovery in untrusted user-mode tools

5Carsten Weinhold - TU Dresden

VDisk Architecture

Secure kernel:
 Provides writable block device for file system
 Logs all changes to protected block device
 Exports read-only block-write history
 Processes log-cleaning requests according to

version retention policy

Untrusted user-space tools:
 Interpret and extract specific versions of files
 Decide which versions to remove from log
 Create proof-bearing cleaning requests

6Carsten Weinhold - TU Dresden

Version Logging

 Log partition sub-divided into segments

 Segments contain entries of:
 Data log
 Metadata log

 Each metadata entry contains
 Physical sector number
 Location in data log
 Timestamp
 Deleted
 ...

7Carsten Weinhold - TU Dresden

Accessing Versioned Data

User-mode tools retrieve versions:
 Work on read-only logs
 Reconstruct file-system semantics
 Retrieve versions of the file system / specific

files
 Can use arbitrary off-the-shelf tools as needed

MySQL-based prototype can retrieve:
 Specific version of a file
 Version history of a specific file

8Carsten Weinhold - TU Dresden

Version Pruning

Log cannot grow indefinitely!

➔Versions need be coalesced

How to preserve data durability?

 Full control for user cannot be allowed

➔VDisk secure kernel enforces declarative
retention policy

9Carsten Weinhold - TU Dresden

Deleting Versions Securely

VDisk cleaner is split:

 Untrusted user-mode cleaner
 Identifies versions to prune
 Creates deletion-candidate and retention-

proof lists
 Identifies metadata log segments to be

compacted

 Secure cleaner
 Check provided proofs
 Execute cleaning request if proof is valid

10Carsten Weinhold - TU Dresden

Retention Policies

 Keep Safe:
 Keep all versions within a certain time interval

 Keep Landmarks:
 Extension of Keep Safe
 After keep-safe period: coalesce short-lived

versions created within certain intervals

 VDisk: Keep Milestones:
 Approximation of Keep Landmarks
 Parameterized by keep-safe interval and

constant milestone interval

11Carsten Weinhold - TU Dresden

Retention Proofs / Cleaning

Proof consists of two versions:

After successful validation:
 Mark data blocks as obsolete in metadata log
 Move live blocks to new segment and free old

segment

Keep-milestone interval Keep-safe Interval

V1 V2 V3 V4
Versions

Time

12Carsten Weinhold - TU Dresden

Milestone Constraint

Additional Keep-Milestones check:
 As opposed to Keep Landmarks, only t1 can

be pruned

13Carsten Weinhold - TU Dresden

Evaluation: Optimizations

14Carsten Weinhold - TU Dresden

Evaluation: Log Growth

15Carsten Weinhold - TU Dresden

Evaluation: bonnie++

16Carsten Weinhold - TU Dresden

Evaluation: PostMark

17Carsten Weinhold - TU Dresden

Points of Discussion

 Optimizations usable for file systems
other than ext2/ext3 (dynamically
allocated inodes, ...)?

 Is lack of write ordering in ext2 a real
problem?

 Your questions?

18Carsten Weinhold - TU Dresden

Retrieving a File Version

 Retrieval based on filename and
timestamp

 Straightforward approach:
 Retrieve superblock
 Retrieve all directories specified in pathname
 Last element is requested file / directory
 File / directory contents found using

metadata (inodes, ...)

 Implemented using SQL requests

19Carsten Weinhold - TU Dresden

Retrieving a File History

 Similar to retrieval of single file, but:
 All versions of all path elements are

examined
 Inode blocks are scanned for inodes with

modification time in requested interval

20Carsten Weinhold - TU Dresden

Logging Optimizations

 Avoid redundant writes
 Hash table with information recently read

sectors and their contents
 Don't write if contents didn't change

 Log certain sectors only once
 Don't write copies of ext2/3 superblocks

and group descriptors

