
Safe Kernel Extensions 
Without Run-Time Checking

George C. Necula	 Peter Lee



The Problem

Code from Untrusted Sources



Your Options

• Hardware-Assisted Protection

• Software Fault Isolation

• Safe Languages and Runtime Environments

✖

✖

?



Wishlist

• easy validation of untrusted code

• execution with no runtime overhead

• no cryptography

• no trusted third party

• no program analysis

• no code editing, compilation, interpretation



PCC



PCC
• code consumer publishes safety policy

• code producer compiles program and 
certifies its adherence of the policy

• PCC-binary contains native code and
safety proof

• code consumer validates the proof

• native code can then run at full speed



What behavior is considered safe?
1. verification-condition generator

• procedure computing a predicate from code
• design can be simplified with an abstract machine

2. precondition
• calling convention

3. axioms for validating the predicate
• inference rules

Safety Policy



Proving the Predicate

• inference rules of first-order predicate 
calculus plus some register arithmetics

• given the precondition we must infer the 
verification condition (VC)

• calculus gives that VC holds

• safety theorem gives that the code is safe 
according to the policy (proof available)



PCC binary

• contains native code and binary 
representation of the proof

• can be tampered with

• if you change the code and it is unsafe, 
the validator will notice

• if the validator does not notice, your 
code is safe (by safety theorem)



Validating the Proof

• calculate the safety predicate from the 
given code with generator from the policy

• check if the proof‘s result is the safety 
predicate

• check if the proof‘s assumed preconditions 
match the ones in your policy

• check, if all steps in the enclosed proof are 
valid instances of inference rules



Evaluation

• safe code execution

• as fast as native code

• versatile policies possible

• extra runtime cost for validation

• binary size increases

• proving step is hard



Imagine …

• protection with object granularity

• no application speed degradation

• we could check for locks, secrets, time

• could be mitigated by code signing?

• no problem?

• certifying compilers?


