
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Paper Reading:
Singularity: Rethinking the 
Software Stack 

2007-08-22

Galen Hunt, James Larus
presented by Bjoern Doebel



2007-08-22 Singularity Slide 2 von 12

Motivation

 “I liken starting one’s computing career with Unix, 
say as an undergraduate, to being born in East Africa. 
It is intolerably hot, your body is covered with lice and 
flies, you are malnourished and you suffer from 
numerous curable diseases. But, as far as young East 
Africans can tell, this is simply the natural condition 
and they live within it. By the time they find out 
differently, it is too late. They already think that the 
writing of shell scripts is a natural act.”

— Ken Pier, Xerox PARC



2007-08-22 Singularity Slide 3 von 12

Motivation (2)

“Two of the most famous products of Berkeley are 
LSD and Unix. I don't think this is a coincidence.”

 Anonymous

• And we don't even talk about MS-DOS, Windows, 
BSD, ...

• OS decisions lead by requirements of 1960s and 
1970s

• Singularity: Rethink systems design and interfaces, 
because hardware, software, computer users have 
evolved through the years.



2007-08-22 Singularity Slide 4 von 12

Singularity concepts

• Design strategies:
– Safe programming language (Sing#)
– Program verification
– Improved system architecture

• Key concepts:
– Software-isolated processes (SIP)
– Contract-based channels
– Manifest-based programs



2007-08-22 Singularity Slide 5 von 12

Software-isolated processes

• Like traditional OS processes:
– execute code on behalf of a user
– associated memory layout
– may contain threads
– information hiding, fault isolation
– use Singularity System Call ABI

• Unlike traditional OS processes:
– no shared (writable) memory
– comm. via channels and exchange heap
– code cannot be modified at exec. time
– isolated by SW verification, no HW protection



2007-08-22 Singularity Slide 6 von 12

Contract-based channels

• bi-directional message channels with exactly 
two endpoints

• in-kernel, lossless, FIFO message queue
• protocols described by contracts (state 

machines) – compile-time verification
• no multiple sends allowed
• transmitted objects need to be allocated from 

special exchange heap – message is basically 
a change of object ownership (== Short IPC)



2007-08-22 Singularity Slide 7 von 12

Manifest-based programs

• All code running in Singularity is described by 
a manifest.
– description of code, system resources, 

capabilities, dependencies on other programs
• Installing code:

– Check manifest if description matches system 
policies and common sense.

– Compile application into native code (Bartok 
compiler)

– Use signatures to detect modifications.
• Manifest also used to infer boot order of 

programs.



2007-08-22 Singularity Slide 8 von 12

The Singularity kernel

• Microkernel approach: device drivers, network 
stacks, ... run outside the kernel.

• 192 system calls (explicit calls instead of 
multiplexing calls)
– process creation
– channel management
– thread management
– paging
– synchronization
– ...

• ABI versioning



2007-08-22 Singularity Slide 9 von 12

The Singularity kernel (2)

• No traditional kernel entry/exit
– privileged code can be “embedded” into SIPs at 

installation time
• Garbage collection

– each SIP has a GC associated, can be chosen 
from a number of predefined GCs

– Problem: OS and SIP may have different GCs, 
but share the same stack
• delimiters on stack mark cross-AS calls, GC 

may simply skip over them



2007-08-22 Singularity Slide 10 von 12

Compile-time Reflection

• Complete reflection has disadvantages:
– runtime checking necessary
– cannot optimize beforehand
– can prevent system security policies by 

generating “evil” code at runtime
• CTR: transforms

– templates -> well-formed, type-safe code
– no need to use complex reflection APIs

• Use case: definition of device driver resource 
needs -> transformed into device driver 
startup code



2007-08-22 Singularity Slide 11 von 12

Protection Domains

• Early versions of Singularity ran all code in 
Ring 0, no HW protection

• Now HW protection as well as SIPs can be 
used.



2007-08-22 Singularity Slide 12 von 12

Rethink the Rethink...

• Is it really a microkernel?
• Fig. 5: Full microkernel has 37.7% overhead 

due to hardware protection domains & co.
– Is this for all microkernels or only if you build a 

“real” microkernel using Singularity (e.g., no 
shared memory...)?

• Is tying SIPs to special processor cores the 
solution to all our problems?


