
Department of Computer Science, Institute for System Architecture, Operating Systems Group

Paper Reading Group:
Interaction of Architecture and Operating System
Design

T. Anderson, H. Levy, B. Bershad, E.
Lazowska

Marcus Völp

January 10, 2007 Marcus Völp 2

Context

• `85 80386 – paged virtual memory
• `89 80486
• `91 Interaction of Hardware and Operating System Design

– We need IA64-RSEs, the Page Global Extension, tagged TLBs,
physically indexed Caches and sysenter!

• `93 Pentium 5
• `95 – P6 (Pentium Pro, PII, PIII): paging global extension (PGE)

– (Dr Dobb's Microprocessor Resources)
• `02 Understanding and Improving Operating System Effects in Control Flow

Prediction
– collect separate branch correlation information for user and kernel code
– use separate branch prediction tables for user and kernel code

• Why do I present a somehow „obsolete“ paper? - lets see!

January 10, 2007 Marcus Völp 3

Trends

Hardware Trends (1991):
• move towards simple, directly-executed instruction sets

– Now: microcode, java instructions on a risc, Transmeta Crusoe (pico-Java
+ x86)

• open-architecture philosophy

• migration from hardware to software
– Now: VT, TE, ...

• performance-oriented approach
– Yes!
– But are Spec CPU and similar single-application runs the right

benchmarks?
– Is VMEntry /VMExit what we really need?
– Recent Trend: Once in there it stays forever?

OS Trends (1991)
• fast local communication

– do we need fast IPC (or can we work around slow one)
• virtual memory

– Yes!
• distributed / parallel programming
• microkernels / Unix as just one interface

January 10, 2007 Marcus Völp 4

Motivation

• Simulation overlooked OS influence
– Asplos

• Unix has driven the design
– Linux still does

• Strong OS research focus on performance
– optimization down to where HW is the bottleneck

• Jochen : IPC 25 cycles + HW Costs
– “may not perform adequately in the future given current architectural

trends”

• Investigate
– null system call
– trap
– page-table entry change
– context switch

January 10, 2007 Marcus Völp 5

IPC / RPC

• RPC (procedure call semantics)

• null RPC processing time: ½ Ping = 240000 Cyc (1.6 Ghz thx Björn)
– Network transfer time 17% (~ 77500 Cyc.) ~32%
– Interrupt processing 30% (~2500 Cyc) ~ 1%
– Wakeup receiving thread 17% (~80000 ORE -> Client (x2?)) ~66%

(UL)
– Stub processing 29%
– Checksums 7% (in HW)

• IPC call + return / LRPC
– 2 kernel entries + exits
– 2 context switches

• state safe / restore
• TLB misses

– Jochen: 25 cycles + HW time for a single path + TLB misses

January 10, 2007 Marcus Völp 6

System Calls and Interrupt Handling

• Mismatch between HW trap and software requirements of system calls

• Kernel entry / exit 4.5 s 230 cyc.
Call preparation 3.1 s
Call / return to C 8.2 s 196 / 296 cyc.

• IPC (P4 – short) [thx. Ron]
– Client marshalling 92 cyc.
– IPC 2 ways 1600 cyc. (ca. 150 cyc. sysenter + 80 cyc. sysexit)
– Server unmarshal. 104 cyc.
– Server marshalling 88 cyc.
– Client unmarshal. 208 cyc.

• limitations by the hardware (1991):
– 4 entry write buffer => stalls account to 30% overhead

(Intel Core 20 Store buffer entries, 32 load buffer)
[Inside Intel Core Microarchitecture – Hot Chips 2006]

– data copying – limited by small caches

January 10, 2007 Marcus Völp 7

Virtual Memory

• Virtual memory “mis”-used to implement
– Copy-on-write relies on quick traps and page permission changes
– Distributed shared memory
– Checkpointing
– Garbage Collection
– Recoverable Virtual Memory
– Transaction Locking

• Imprecise Faults - Exposure of processor Pipeline state
– Rarely found in todays CPUs
– ARM 1136JF-S

• MMU generates precise data aborts,
• watchpoints are imprecise but restartable (reported on an instruction

boundary)
• external data aborts to CP15, Strongly Ordered Memory, PC, CSPR,

SWP load part are precise, others are imprecise

• HW reports insufficient information
– need to decode faulting instruction to determine cause + address
– still required on ARM

January 10, 2007 Marcus Völp 8

TLBs + Page tables

• !!! WE ALL NEED TAGGED TLBS + PHYSICALLY INDEXED CACHES !!!

• Are multi-level page-tables the right thing to do: GPTs?

• TLB shootdown
– Itanium: global TLB purge
– memory based TLBs perform better than processor based TLBs

[Patricia Teller – TLB Performance in Multiprocessors (1991)]

– Why can't PTE caches participate in the cache coherence protocol?
– No TLB invalidations at all?

January 10, 2007 Marcus Völp 9

Threads and Multiprocessing

• Issue: safe / restore register state

• SPARC – Register Window
• Itanium Register Stack Engine

– Backing Store Pointer to automatically spill / fill the 96 rotating registers

• Isn't is just sufficient to add thread IDs when we rename registers?
– yes perhaps we need some lazy spills + fills

January 10, 2007 Marcus Völp 10

How do Operating Systems and Applications
behave?

Mach 3.0

Time (sec) AS Switch Th Switch KTLB Miss % in OS
1.4 1277 1418 1898 13807 22931 2824 20

80.9 16208 19068 16561 213781 378159 19309 5
99.2 41355 50865 70495 492179 1136756 144122 12
150 128874 144919 160233 1601813 1865436 187804 16

29.9 24589 25830 26904 164436 423607 29796 16
28.8 1723 2211 1308 1406792 12675 3385 18
26.3 1785 3963 1372 1341130 18038 4045 19

Syscall Emul Inst. Other Exc

January 10, 2007 Marcus Völp 11

Anderson's Conclusion

• Operating systems are decomposed into mircokernel-based systems;
– When will Linus accept this!

• Architectures have made IPC more costly

• Operating systems are requiring more use of memory management
• Handling MMU events has become more difficult

• Operating systems are moving towards fine grain multithreading
• Architectures are adding more state, making fine grain threads more

expensive

January 10, 2007 Marcus Völp 12

my Conclusions

• Processor architectures are moving targets
• Operating system impacts on architectural performance are not negligible

• We can influence hardware developments, provided we can justify the
performance improvements?

• How can hardware based mechanisms solve your problem better than the
software solution you are proposing?

– Parallel comparisons are trivial with CAM: OS-level TLB for capspace
lookups?

– What would happen if we implement delayed preemption in the interrupt
controller?

• delay the incoming interrupt and deliver it latest with the timer?
• increased cost to enter a DP section (~ program an LAPIC register)

– What to do with instructions like:
• is this memory locally cached?
• is the page in the TLB and has the entry sufficient permissions?
• lock this cacheline / wait until it is unlocked?

