
Backwards-Compatible
Array Bounds Checking for C

with Very Low Overhead
Dinakar Dhurjati Vikram Adve

C bounds checking

• fat pointers

• not compatible for unchecked code

• separate metadata

• pointer-to-metadata map

• careful engineering allows compatibility

Automatic Pool
Allocation

• merge all target objects of one pointer to a
pool

• „pools will be type homogeneous with a
known type“

• pools convey type information for pointers

4

Automatic Pool Allocation

Chris Lattner and Vikram Adve

Presented by William Lovas

5

Motivation

• Data locality is important!
• Compilers are good with arrays…
• … but bad with pointer-based data

structures

6

Motivation

• Existing techniques focus on individual
references or data elements

• Big idea: analyze how programs use entire
data structures!

7

Pool Allocation

• Allocate disjoint data structures in disjoint
portions of the heap (pools)

• … automatically, via static program
transformation!

8

Pool Allocation

• Transform:

9

Pool Allocation

• Into:

10

Approach

• Create a data structure graph for each
function F
 A “points-to” graph with some extra info

• DS graph records, for each object:
 Type of the object
 Whether it’s heap-allocated
 Whether it escapes F

11

Approach

• Use DS graph to assign a pool to each
object
• Use assignment to rewrite program:

 Calls to malloc/free become calls to pool_alloc/
pool_free

 Creates local pools for non-escaping objects
 Adds pool arguments for escaping objects

12

Example [Lattner]

list *makeList(int Num) {
 list *New = malloc(sizeof(list));
 New->Next = Num ? makeList(Num-1) : 0;
 New->Data = Num; return New;
}

void twoLists() {

 list *X = makeList(10);
 list *Y = makeList(100);
 GL = Y;
 processList(X);
 processList(Y);
 freeList(X);
 freeList(Y);

}

13

Example [Lattner]

list *makeList(int Num, Pool *P) {
 list *New = pool_alloc(P, sizeof(list));
 New->Next = Num ? makeList(Num-1, P) : 0;
 New->Data = Num; return New;
}

void twoLists() {

 list *X = makeList(10);
 list *Y = makeList(100);
 GL = Y;
 processList(X);
 processList(Y);
 freeList(X);
 freeList(Y);

}

14

Example [Lattner]

list *makeList(int Num, Pool *P) {
 list *New = pool_alloc(P, sizeof(list));
 New->Next = Num ? makeList(Num-1, P) : 0;
 New->Data = Num; return New;
}

void twoLists() {
 Pool P1;
 pool_init(&P1);
 list *X = makeList(10, &P1);
 list *Y = makeList(100);
 GL = Y;
 processList(X);
 processList(Y);
 freeList(X, &P1);
 freeList(Y);
 pool_destroy(&P1);
}

15

Example [Lattner]

list *makeList(int Num, Pool *P) {
 list *New = pool_alloc(P, sizeof(list));
 New->Next = Num ? makeList(Num-1, P) : 0;
 New->Data = Num; return New;
}

void twoLists(Pool *P2) {
 Pool P1;
 pool_init(&P1);
 list *X = makeList(10, &P1);
 list *Y = makeList(100, P2);
 GL = Y;
 processList(X);
 processList(Y);
 freeList(X, &P1);
 freeList(Y, P2);
 pool_destroy(&P1);
}

16

Difficulties

• Function pointers
 Two functions with different properties might be

called (indirectly) at the same site
• Solution:

 Partition functions into equivalence classes
 Merge DS graphs

17

Difficulties

• Global pools
 Pool arguments for heap-allocated globals must

be added to every function that touches the
globals

 Can be thousands of arguments in practice
• Solution:

 Use global variables for global pools
 Pool arguments grow with original arguments

18

Results

• Small additional compile time
 <= 1.25 seconds in all experiments
 <= 3% of total compile time

• Low overhead
 <= 5% in most experiments

• Improved performance
 5% to 20% in most experiments
 2x and 10x in a few examples

19

Results

• Limited discussion of corner cases

• Automatic pool allocation could decrease
performance
 Decrease locality for certain access patterns
 Small pools on nearly-empty pages

 Some techniques help address these issues

20

Conclusions

• Simple yet sophisticated data structure
analysis, for data locality
• Experimentally validated
• Not obviously universally applicable

Engineering

• use type-information provided by pooling to
speed up pointer metadata search

• heavier verification for pointer arithmetics

• lightweight verification for pointer use

• track out-of-bounds pointers

Questions

• What errors cannot be detected?

• How „safe“ are we compared to Java /
OCaml / …?

• Are the C-library wrappers for API-checking
cheating?

• Usability of the approach?

