Backwards-Compatible
Array Bounds Checking for
with Very Low Overhead

Dinakar Dhurjati ~ Vikram Adve

.,'?‘.v/".- E

C bounds checking

® fat pointers

® not compatible for unchecked code

Automatic Pool
Allocation

® merge all target objects of one pointer to a
pool

Automatic Pool Allocation

Chris Lattner and Vikram Adve

Presented by William Lovas

———

Data locality is important!
Compilers are good with arrays...

... but bad with pointer-based data
structures

Motivation

Existing techniques focus on individual
references or data elements

Big idea: analyze how programs use entire
data structures!

Pool Allocation

Allocate disjoint data structures in disjoint
portions of the heap (pools)

... automatically, via static program
transformation!

Pool Allocation

* Transform:

Pool Allocation

© Into:

Approach

Create a data structure graph for each
function F

= A "points-to” graph with some extra info

DS graph records, for each object:

= Type of the object
= Whether it's heap-allocated
= Whether it escapes F

10

Approach

Use DS graph to assign a pool to each
object

Use assignment to rewrite program:

= Calls to malloc/free become calls to pool alloc/
pool free

= Creates local pools for non-escaping objects
= Adds pool arguments for escaping objects

11

Exam o, le [Lattner]

list *makelist (int Num) {
list *New = malloc(sizeof(list)
New->Next = Num ? makelList (Num-
New—->Data = Num; return New;

J

) ;
1) —C

vold twoLists () A

list *X = makeList (10); <:::) <:::> [ﬁmGMm;]
Global

list *Y = makelList (100); I

GL = Y;
processList (X) ; (" list: HMRC (" list: HMRC
processList (Y) ; Ulist* | int)/ list* | int)

freelist (X) ;

freelList (Y) ;

Exam o, le [Lattner]

list *makelList (int Num, Pool #*P) {
list *New = pool alloc(P, sizeof(list));
New->Next = Num ? makeList (Num-1, P) : O;
New—->Data = Num; return New;

J

vold twolists () |

list *X = makelList(10); <:::> <:::> [méﬂﬁFi]

list *Y = makeList (100); I

GL = Y; . .
processList (X) ; (11st: HMRC (hst: HMRC\
processList (V) list* | int)/ list* | int)

freelist (X) ;

freelList (Y) ;

Exam o, le [Lattner]

list *makelList (int Num, Pool #*P) {
list *New = pool alloc(P, sizeof(list));
New->Next = Num ? makeList (Num-1, P) : O;
New—->Data = Num; return New;

J

vold twolists () |
Pool P1;

pool init (&P1);
list *X = makelList (10, &PI); s
list *Y = makeList (100); <:::> <:::> [émm1j]
GL = Y; I I

processList (X) ; . .
processList (Y) ; (" list: HMRC (" list: HMRC)
freeList (X, &P1); Ulist* | int)/ list* | int)

freelist (Y);

pool destroy (&P1);

Exam o, le [Lattner]

list *makelList (int Num, Pool #*P) {
list *New = pool alloc(P, sizeof(list));
New->Next = Num ? makeList (Num-1, P) : O;
New—->Data = Num; return New;

J

volid twolists (Pool *PZ) {
Pool P1;

pool init (&P1);
list *X = makelList (10, &PI); s
list *Y = makeList (100, P2); <:::> <:::> [Global]
GL = Y; I I

processList (X) ; , .
processList (Y) ; (" list: HMRC (" list: HMRC)

freeList (X, &P1); Ulist* | int)/ list* | int)
freelist (Y, FP2);

pool destroy (&P1);

Difticulties

Function pointers

= Two functions with different properties might be
called (indirectly) at the same site

Solution:

= Partition functions into equivalence classes
= Merge DS graphs

16

Difficulties

Global pools

= Pool arguments for heap-allocated globals must
be added to every function that touches the
globals

= Can be thousands of arguments in practice

Solution:

= Use global variables for global pools
= Pool arguments grow with original arguments

17

Results

Small additional compile time
= <= 1.25 seconds in all experiments
= <= 3% of total compile time

Low overhead
= <= 5% in most experiments

Improved performance
= 5% to 20% in most experiments
= 2x and 10x in a few examples

18

Results

Limited discussion of corner cases

Automatic pool allocation could decrease
performance

= Decrease locality for certain access patterns
= Small pools on nearly-empty pages

= Some techniques help address these issues

19

% Conclusions

Simple yet sophisticated data structure
analysis, for data locality

Experimentally validated
Not obviously universally applicable

20

Engineering

® use type-information provided by pooling to
speed up pointer metadata search

Questions

® Vhat errors cannot be detected?

® How ,safe” are we compared to Java /
S,

: ‘ CaIIII/o‘ooo
r, S - =AY - '.:3- 2 Jrid ;
Rl (e ! eae i

