
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Generalized File System 
Dependencies
 

Christopher Frost et al.

Dresden, 2008-02-20

Paper Reading Group Presentation
by Carsten Weinhold



Dresden, 2008-02-20 Generalized File System Dependencies Slide 2 of 24

Motivation

• Goal: Durability of file system changes:
– Do not loose data after crash
– File system in consistent state every write

• Many approaches:
– Journaling
– Soft updates
– WAFL
– ACID transactions

• In practice:
– Developers trade one for the others
– Little flexibility for applications (fsync(), ...)
– Hard to get right



Dresden, 2008-02-20 Generalized File System Dependencies Slide 3 of 24

Featherstitch

• New architecture for building file systems

• Generalized abstraction of write-before 
dependencies

• Based on patches:
– Describe changes to blocks

– Depend on other patches

– Used to implement consistency models in file 
system code

• Applications can express dependencies using 
Patchgroup abstraction



Dresden, 2008-02-20 Generalized File System Dependencies Slide 4 of 24

Featherstitch Contributions

• Usable for various consistency models

• Patches and patchgroups are agnostic to 
specific file system

• New implementation:
– Ext2 and UFS file systems
– Patch-aware buffer cache
– Journaling and soft updates based on patches
– Other approaches not mentioned in paper 

implemented as well
– Available for Linux, Mac OS X, FUSE



Dresden, 2008-02-20 Generalized File System Dependencies Slide 5 of 24

Patches

• Describe data change in a block (+ undo data)
• Specify dependencies on other patches

patch_create(block *b, int ofs, int length, 
           char *data, patch *dep)

Undo data

Patch

Dependency

Disk block

P

A B

Q

Featherstitch Buffer Cache

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 6 of 24

Example: Asynchronous rename()

• Filename in source dir needs to be removed
• Filename in destination needs to be added

• Problem:

target dir source dir

add
dirent

remove
dirent

targetsource
addrem

,
Time

(Figures taken from the original
SOSP 2007 presentation)

File lost



Dresden, 2008-02-20 Generalized File System Dependencies Slide 7 of 24

Example: rename() with Soft Updates

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 8 of 24

Example: rename() with Soft Updates

inode table

target dir

source dir

Block level cycle:

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 9 of 24

Example: rename() with Soft Updates

Not a patch level cycle:

add
dirent

inc #refs remove
dirent

dec #refs

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 10 of 24

Example: rename() with Journaling

target dir source dir

add
dirent

remove
dirent

commit
txn

 txn log

block copy

add
dirent

remove
dirent

block copy

Journal

commit
txn

complete
txn

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 11 of 24

Example: Loopback Block Device

Meta-data journaling file system

Loopback block device

Meta-data journaling file system

SATA block device

Meta-data journaling file system obeys file data requirements

Buffer cache block device

Block device

Block device

File system

Block device

File system

Backed by file

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 12 of 24

Application-Level Consistency

• Consistency required in many use cases:

– Databases

– E-mail servers

– Version control systems

• Common solutions:
– Expensive sync operations (fsync(), ...)

– Rely on underlying file system (data journaling)

– (Re-)Implement all consistency code (e.g., 
database systems operating on raw disks)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 13 of 24

Patchgroups

• Applications specify write-before 
dependencies using patchgroups

• Can span multiple files

write(b)

unlink(a)
write(d)

rename(c)

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 14 of 24

Patchgroup API



Dresden, 2008-02-20 Generalized File System Dependencies Slide 15 of 24

Example: UW IMAP

fsync

fsync

fsync

pg_depend

pg_depend

Unmodified UW IMAP Patchgroup UW IMAP



Dresden, 2008-02-20 Generalized File System Dependencies Slide 16 of 24

Patch Optimizations

• First naïve implementation performed badly:

– Patches and their undo data consumed too 
much memory

– CPU time for handling patches too high

• Authors optimized Featherstitch:

– Omit undo data if not needed

– Merge patches to reduce number of patches 
and dependencies

• Problem: Undo data can only be omitted if 
future is known!



Dresden, 2008-02-20 Generalized File System Dependencies Slide 17 of 24

Block-Level Cycles

• Dependency cycles are 
forbidden

• Block-level cycles can 
happen

• Idea: Restrict API

– Dependencies can 
only be specified 
when creating a patch 
(more or less)

– Block-level cycles are 
known at creation

Induces
cycle

P

R

Q

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 18 of 24

Hard Patches vs. Soft Patches

• Any patch that needs to be reverted must 
induce block-level cycle

• Two types of patches:
– Hard patches

• No block-level cycle
• No undo data

– Soft patches
• Need to be reversible
• Undo data



Dresden, 2008-02-20 Generalized File System Dependencies Slide 19 of 24

Patch Merging

• Hard patch merging:

– No undo data
– Only one hard patch per block

• Overlap merging of soft patches:
– Can be merged with soft patch

– Can be merged with hard
patch, if previous
dependencies no longer exist

BA A + B

B

A A+B

(Figures taken from the original
SOSP 2007 presentation)



Dresden, 2008-02-20 Generalized File System Dependencies Slide 20 of 24

Other Optimizations

• Ready patch list:

– Maintained per block in in the buffer cache

– Contains patches that are safe for writing 
(making them in-flight)

– Patches are added, if there are no more direct 
dependencies that are in uncommitted or in-
flight state

• General optimization in the file system itself

– Minimal dependencies, block layout

– ...



Dresden, 2008-02-20 Generalized File System Dependencies Slide 21 of 24

Evaluation: Postmark Performance

0

10

20

30

40

50

60

70

80

90 PostMark

T
im

e 
(s

ec
o
n
d
s)

Fstitch total time Fstitch system time Linux total time Linux system time

Full data
journal

Meta data
journal

Soft updates



Dresden, 2008-02-20 Generalized File System Dependencies Slide 22 of 24

Evaluation: UW IMAP Performance



Dresden, 2008-02-20 Generalized File System Dependencies Slide 23 of 24

Sources

• Generalized File System Dependencies, 
Christopher Frost, Mike Mammarella, Eddie Kohler, 
Andrew de los Reyes, Shant Hovsepian, Andrew 
Matsuoka, Lei Zhang SOSP 2007, Stevenson, WA, USA

• These slides are based on the original SOSP 2007 
presentation slides created by the paper's authors:
http://www.sosp2007.org/talks/sosp169-frost.ppt



Dresden, 2008-02-20 Generalized File System Dependencies Slide 24 of 24

Discussion Points

• Featherstitch is really cool stuff!

• Is it feasible to have consistency enforcement 
outside the TCB operating on encrypted 
blocks / patches?

• It is generic, can this be done in hardware 
(e.g., harddisk firmware)?


