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Motivation

• Goal: Durability of file system changes:
– Do not loose data after crash
– File system in consistent state every write

• Many approaches:
– Journaling
– Soft updates
– WAFL
– ACID transactions

• In practice:
– Developers trade one for the others
– Little flexibility for applications (fsync(), ...)
– Hard to get right
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Featherstitch

• New architecture for building file systems

• Generalized abstraction of write-before 
dependencies

• Based on patches:
– Describe changes to blocks

– Depend on other patches

– Used to implement consistency models in file 
system code

• Applications can express dependencies using 
Patchgroup abstraction
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Featherstitch Contributions

• Usable for various consistency models

• Patches and patchgroups are agnostic to 
specific file system

• New implementation:
– Ext2 and UFS file systems
– Patch-aware buffer cache
– Journaling and soft updates based on patches
– Other approaches not mentioned in paper 

implemented as well
– Available for Linux, Mac OS X, FUSE
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Patches

• Describe data change in a block (+ undo data)
• Specify dependencies on other patches

patch_create(block *b, int ofs, int length, 
           char *data, patch *dep)

Undo data

Patch

Dependency

Disk block

P

A B

Q

Featherstitch Buffer Cache

(Figures taken from the original
SOSP 2007 presentation)
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Example: Asynchronous rename()

• Filename in source dir needs to be removed
• Filename in destination needs to be added

• Problem:

target dir source dir

add
dirent

remove
dirent

targetsource
addrem

,
Time

(Figures taken from the original
SOSP 2007 presentation)

File lost
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Example: rename() with Soft Updates

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

(Figures taken from the original
SOSP 2007 presentation)
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Example: rename() with Soft Updates

inode table

target dir

source dir

Block level cycle:

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

(Figures taken from the original
SOSP 2007 presentation)
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Example: rename() with Soft Updates

Not a patch level cycle:

add
dirent

inc #refs remove
dirent

dec #refs

inode table target dir source dir

add
dirent

remove
dirent

inc #refs

inc #refs

dec #refs

(Figures taken from the original
SOSP 2007 presentation)
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Example: rename() with Journaling

target dir source dir

add
dirent

remove
dirent

commit
txn

 txn log

block copy

add
dirent

remove
dirent

block copy

Journal

commit
txn

complete
txn

(Figures taken from the original
SOSP 2007 presentation)
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Example: Loopback Block Device

Meta-data journaling file system

Loopback block device

Meta-data journaling file system

SATA block device

Meta-data journaling file system obeys file data requirements

Buffer cache block device

Block device

Block device

File system

Block device

File system

Backed by file

(Figures taken from the original
SOSP 2007 presentation)
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Application-Level Consistency

• Consistency required in many use cases:

– Databases

– E-mail servers

– Version control systems

• Common solutions:
– Expensive sync operations (fsync(), ...)

– Rely on underlying file system (data journaling)

– (Re-)Implement all consistency code (e.g., 
database systems operating on raw disks)
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Patchgroups

• Applications specify write-before 
dependencies using patchgroups

• Can span multiple files

write(b)

unlink(a)
write(d)

rename(c)

(Figures taken from the original
SOSP 2007 presentation)
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Patchgroup API
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Example: UW IMAP

fsync

fsync

fsync

pg_depend

pg_depend

Unmodified UW IMAP Patchgroup UW IMAP
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Patch Optimizations

• First naïve implementation performed badly:

– Patches and their undo data consumed too 
much memory

– CPU time for handling patches too high

• Authors optimized Featherstitch:

– Omit undo data if not needed

– Merge patches to reduce number of patches 
and dependencies

• Problem: Undo data can only be omitted if 
future is known!
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Block-Level Cycles

• Dependency cycles are 
forbidden

• Block-level cycles can 
happen

• Idea: Restrict API

– Dependencies can 
only be specified 
when creating a patch 
(more or less)

– Block-level cycles are 
known at creation

Induces
cycle

P

R

Q

(Figures taken from the original
SOSP 2007 presentation)
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Hard Patches vs. Soft Patches

• Any patch that needs to be reverted must 
induce block-level cycle

• Two types of patches:
– Hard patches

• No block-level cycle
• No undo data

– Soft patches
• Need to be reversible
• Undo data
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Patch Merging

• Hard patch merging:

– No undo data
– Only one hard patch per block

• Overlap merging of soft patches:
– Can be merged with soft patch

– Can be merged with hard
patch, if previous
dependencies no longer exist

BA A + B

B

A A+B

(Figures taken from the original
SOSP 2007 presentation)
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Other Optimizations

• Ready patch list:

– Maintained per block in in the buffer cache

– Contains patches that are safe for writing 
(making them in-flight)

– Patches are added, if there are no more direct 
dependencies that are in uncommitted or in-
flight state

• General optimization in the file system itself

– Minimal dependencies, block layout

– ...
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Evaluation: Postmark Performance
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Evaluation: UW IMAP Performance
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Sources

• Generalized File System Dependencies, 
Christopher Frost, Mike Mammarella, Eddie Kohler, 
Andrew de los Reyes, Shant Hovsepian, Andrew 
Matsuoka, Lei Zhang SOSP 2007, Stevenson, WA, USA

• These slides are based on the original SOSP 2007 
presentation slides created by the paper's authors:
http://www.sosp2007.org/talks/sosp169-frost.ppt
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Discussion Points

• Featherstitch is really cool stuff!

• Is it feasible to have consistency enforcement 
outside the TCB operating on encrypted 
blocks / patches?

• It is generic, can this be done in hardware 
(e.g., harddisk firmware)?


