
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Construction of a Highly
Dependable Operating System
(J. Herder et al.)

Dresden, 2008-02-27

presented by Bjoern Doebel

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 2 von 11

Motivation

• Operating Systems crash
– ~10 bugs per 1.000 LoC
– device driver bugs are hard to debug, but:

device drivers responsible for 85% of WinXP
crashes
• problem: device drivers are written by

untrusted third-party developers (== device
vendors)

• Idea: move device drivers to user space

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 3 von 11

User-level device drivers

• every driver isolated in a separate process
• no chance of corrupting other apps' data
• ideally, simply kill and restart the driver

process

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 4 von 11

Approach

• Identify dependencies and come up with a
solution
– driver on kernel symbols
– kernel depends on driver
– drivers depend on each other
– driver performs HW I/O
– interrupt handler accesses driver data

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 5 von 11

Solutions

• Add new system calls
– read/write I/O port vector
– inter-AS copy
– process privilege control
– manage IRQs

• Redesign interrupt handlers
• IPC redesign

– enforce combined send/receive operations
(e.g., on kernel interaction)

– asynchronous IPC

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 6 von 11

Solutions (2)

• IPC righs management
– distinction between drivers – kernel – servers –

users
• Restrict resource usage of drivers according

to POLP – syscalls, IRQ lines, I/O ports
• Experiment with different file system block

sizes
• Use a RAM disk to workaround block driver

overhead... ?!

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 7 von 11

Recovery?

• Reincarnation server (-> “Redesigning UNIX
for reliability”, ACSAC 2006)
– parent of all drivers
– upon termination receives signal and restarts

driver
– may periodically poll drivers for liveness and

kill/restart them if they don't answer
• Helps for transient errors

– aging errors
– temporary attacks

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 8 von 11

Recovery (2)

• Data store
– apps can store specific data

• like priv_data[app_name]
• can be used to implement name service, too

– pub/sub system to get notifications
• clients can subscribe to their drivers' data

and get notified about changes

• Recovery/Retry after driver restart is left to
the clients... !?

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 9 von 11

Comparison to L4(.Fiasco)

• no dedicated syscalls
– Port I/O (-> IOPL)
– inter-AS copy (-> IPC)
– IRQ management (-> IPC, Omega0)

• more fine-grained rights management
– I/O guard

• I/O bitmap for ports
• I/O dataspaces

– IPCMon – IPC control with task granularity

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 10 von 11

Comparison to L4(.Fiasco)

• reuse legacy drivers instead of redesigning
everything from scratch
– DDEKit + DDE{Linux,FBSD}
– easy support for a broad range of drivers

• Our Achilles' Heel: No restartable device
drivers

TU Dresden, 2008-02-27 Construction of a highly dependable Operating System Slide 11 von 11

Discussion

• Portability vs. platform-specific optimizations:
“On most machines, doing I/O is not possible in user
mode. On some machines there may be a way to map
a page containing I/O registers to user space or map
some of the I/O ports to user space, but this is not
always possible and should not be relied on.”

• I doubt that Reincarnation Server and Data
Storage are enough for restartability.

• Why didn't we write a paper on DDE in
2001...?

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

