
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

A Principled Approach to
Operating System Construction
in Haskell

Dresden, 2008-03-26

Thomas Hallgren, Mark P. Jones, Rebekah Leslie,
Andrew Tolmach

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 2 von 19

What is it all about?

• Writing operating systems in Haskell

• Provide a Haskell framework, which abstracts
hardware access, consisting of:
 Haskell Runtime System
 Hardware monad

• Thesis: using pure functional languages
facilitates construction of high assurance
systems

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 3 von 19

OS construction in Haskell ?

Haskell's features:

• Strong static typing, memory safe

• Neither pointer arithmetic, casting nor
deallocation

• Pure functional language

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 4 von 19

Pure functional languages

• Data flow is made explicit

• Value of expression depends only on its free
variables

• Substitution of equals for equals is always
valid

• Computational order is irrelevant
➔ Eases up evaluation especially with respect to

property verification

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 5 von 19

Example divisor

• Take divide one term by another:

data Term = Con Int | Div Term Term

eval :: Term -> Int
eval (Con a) = a
eval (Div t u) = eval t ÷ eval u

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 6 von 19

When loosing state ...

• Example: exception
data M a = Raise Exception | Return a
type Exception = String

eval :: Term -> M Int
eval (Con a) = Return a
eval (Div t u)= case eval t of
 Raise e -> Raise e
 Return a -> case eval u of
 Raise e -> Raise e
 Return b -> if b = 0
 then Raise "divide by zero"
 else Return (a ÷ b)

➔ Introduction of Monads

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 7 von 19

Monads

• Represent states resp. stores function results
and side-effect representations

• Sequence operations
• are triples consisting of:

 type construction defining for every underlying
type the corresponding monadic type

 unit function mapping values to values of the
corresponding monadic type

 binding operation (M t)→(t→M u)→(M u)

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 8 von 19

Error monad

data M a = Raise Exception | Return a
type Exception = String

unit :: a -> M a
unit a = Return a
(*) :: M a -> (a -> M b) -> M b
m * k = case m of

Raise e -> Raise e
 Return a -> k a

raise :: Exception -> M a
raise e = Raise e

eval :: Term -> M Int
eval (Con a) = unit a
eval (Div t u) = eval t * λa.eval u * λb.
 (if b=0 then raise “...” else unit(a÷b))

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 9 von 19

OS construction

• I/O monad

• Foreign Function Interface (monads needed)

Problem:

• FFI insecure by using raw pointers (-)
arithmetic and unsafe type casts

➔ Introduction of the 'hardware monad' HH

➔ Specification & verification of certain monad's
properties

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 10 von 19

Hardware monad – physical memory

• Physical pages abstraction (excluding heap)
and allocation mechanism (garbage collected)

type Paddr = (PhysPage, Poffset)
type PhysPage
type POffset = Word12

pageSize = 4096 :: Int

allocPhysPage :: H (MayBe PhysPage)
getPAddr :: PAddr -> H Word8
setPAddr :: Paddr -> Word8 -> H ()

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 11 von 19

Hardware monad – virtual memory

• Allocating, writing and reading of (one-level)
page maps including entries with typical
properties

type PageMap
allocPageMap :: H (Maybe PageMap)

data PageInfo
 = PageInfo { physPage::PhysPage,
 writable, dirty,
 accessed::Bool }
 deriving (Eq,Show)

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 12 von 19

Hardware monad – 'Threads'

• Execution of code:

execContext :: PageMap -> Context

 -> H (Interrupt,Context)

data Context
 = Context { edi, esi, ebp, esp, ebx,
 edx, ecx, eax, eip,
 eflags :: Word32 }

data Interrupt = I_DivideError | ...

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 13 von 19

Hardware monad - I/O

• I/O ports and memory mapped I/O are
supported

• Interrupt handling

data IRQ = IRQ0 | IRQ1 | ... | IRQ15
 deriving (Bounded, Enum)

enableIRQ, disableIRQ :: IRQ -> H()
enableInterrupts,disableInterrupts :: H()

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 14 von 19

Hardware monad - concurrency

• In Haskell RTS code can only be paused at
'safe points' (heap check points)

• When interrupts are raised in supervisor
mode, two interrupt handling routines
possible
 explicit model: Haskell threads poll for

interrupts
 implicit model: using the signal handling

mechanisms in the RTS

• Implicit concurrency breaks certain state-
based assertions

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 15 von 19

P-Logic

• Extension of the Haskell language

• Used to describe properties of H H and the
underlying hardware, that can be verified by a
theorem prover (Isabelle):
 Allocations of pages, page maps etc. deliver

distinct values
 Bounds checking (e.g.: address space bound.)
 Several non-interference properties (e.g.: page

map entries, physical addresses, I/O ports ...)

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 16 von 19

Using H H – Osker

• Oregon Separation Kernel: implementation of
L4X2 using the hardware monad framework

• Goal: proving non-interference of concurrent
processes

• Separating state in distinct components
(different monads) limits the space one has to
reason about (e.g. yield() example)

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 17 von 19

Conclusions

• It works somehow, but we don't know how
good

• It's far away from being formally verified
 RTS: 90 000 LOC + libc
 7 MB kernel image

• Lack of evaluation at all, especially on the
facilitation of verification

• Very x86 specific

• Nevertheless I like the idea and approach
(OSKit)

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 18 von 19

Discussion

• Garbage collection within the kernel is it
really a problem ?

• Don't we have so much state here, that the
functional part gets negligible, maybe a
pointer-safe language like Java is enough to
facilitate formal proof ?

TU Dresden, 2008-03-26 Operating System Construction in Haskell Slide 19 von 19

Further Reading

• 'Monads for functional programming' by
Philip Wadler (Glasgow) 1993
http://citeseer.ist.psu.edu/wadler95monads.htmlhttp://citeseer.ist.psu.edu/wadler95monads.html

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

