
Shredding Your Garbage
Reducing Data Lifetime Through Secure Deallocation

Jim Chow, Ben Pfaff, Tal Garfinkel, Mendel Rosenblum

presented by Michael Roitzsch



Problem

• scrubbing memory is used only for 
credentials like keys or passwords

• data may spill out via core dumps, logs, 
swapping, driver buffers, window manager

• most of this is outside application control

Most applications take no steps to minimize 
the amount of sensitive data in memory.



Holes



Data Life Cycle

mall
oc

writ
e
re

ad
fre

e mall
oc

writ
e



Secure Deallocation

• scrub on deallocate as a conservative 
heuristic

• time of last use is generally unknown

• should not introduce errors

• requires no a priori knowledge about data 
use in an application



Layered Clearing

• applicable at many levels

• application-level

• compiler-level

• library-level

• kernel-level

• clearing only on one level is insufficient



0s

10s

20s

30s

40s

50s

60s

70s

Mozilla ssh sshd Python Apache xterm ls

Ideal Secure Deallocation Natural



Kernel Clearing

• free pages divided into three pools

• not-zeroed pool

• zeroed pool

• polluted pool

• zeroing daemon ensures pages do not stay 
in polluted pool longer than 5 seconds



Results

• Apache & Perl workload

• CGI script checks a password

• all tainted memory is cleared with some 
benign exceptions

• Emacs workload

• all taints cleared except entropy pool



Performance Impact

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

fire
fox

Sp
ee

d

Unmodifed
Heap Clearing

Figure 6: Heap clearing has little performance impact. This
chart shows the relative performance of an unmodified glibc
2.3 heap allocator versus the same allocator modified to zero at
free time in a set of user programs. The unmodified runs are
normalized to 1.0. Zero-on-free overheads are less than 7% for
all tested applications.

after it had closed the file. Removing the fclose call
fixed the bug, but we had to touch the sources to do this.
We don’t believe this impacted our performance results.

7.2.2 Stack Clearing Overhead

We implemented stack clearing for applications by mod-
ifying our OS to periodically zero the free stack space in
user processes that have run since the last time we cleared
stacks. We do so by writing zero bytes from the user’s
stack pointer down to the bottom of the lowest page allo-
cated for the stack.

Figure 7 gives the results of running our workload with
periodic stack clearing (configured with a period of 5
seconds) plus our other kernel clearing changes. Just like
heap clearing, periodic stack clearing had little impact
on application performance, with less than a 2% perfor-
mance increase for all our tests.

Immediate Stack Clearing For those applications
with serious data lifetime concerns, the delay inherent
to a periodic approach may not be acceptable. In these
cases, we can perform an analog of our heap clearing
methodology by clearing stack frames immediately when
they are deallocated.

We implemented immediate stack clearing by modify-
ing GCC 3.3.4 to emit a stack frame zeroing loop in every
function epilogue. To evaluate the performance impact
of this change, we compared the performance of a test
suite compiled with an unmodified GCC 3.3.4 against the
same test suite compiled with our modified compiler.

Figure 7 gives the results of this experiment. We see
that overheads are much higher, generally between 10%
and 40%, than for periodic scheduled clearing. Clearly,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

fire
fox

S p
ee

d

Unmodified
Periodic Clearing
Immediate Clearing

Figure 7: Comparing stack clearing overheads. This chart
shows the relative performance of our workload with three
strategies: an unmodified run with no stack clearing used as a
baseline, a periodic run with OS scheduled stack zeroing (con-
figured to 5 second intervals) as well as our other kernel zeroing
features, and a immediate run with immediate stack zeroing on
every function return. Periodic zeroing has little performance
overhead. Immediate zeroing has more of a penalty, which may
be acceptable to security-conscience applications.

such overheads are significant, though they may be ac-
ceptable for applications where data lifetime is an utmost
concern.

7.3 Kernel Clearing Overhead
Batch Workload We used Linux kernel builds to stress
our page zeroing changes. A kernel build starts many
processes, each of which modifies many heap, stack, and
static data pages not backed by files. The kernel con-
siders all of these polluted and zeros them within five
seconds of deallocation.

With the ordinary kernel running, three kernel builds
took 184, 182, and 183 seconds, for an average of 183
seconds. With the zeroing kernel, the runs took 188, 184,
and 184 seconds, for an average of 185 seconds, approx-
imately a 1% penalty.

The kernel build zeroed over 1.2 million pages (about
4.8 GB) per run. The actual number of polluted pages
generated was much larger than that, but many of those
pages did not need to be zeroed because they could be
entirely overwritten by pages brought into the page cache
from disk or by copies of pages created when triggering
copy-on-write operations. (As described in section A.2,
we prefer to overwrite polluted data whenever possible.)

Network Workload We evaluated the overhead of ze-
roing by benchmarking performance on 1 Gbps Ethernet,
achieving up to 500 Mbps utilization for large blocks.
We found latency, bandwidth, and CPU usage to be in-

14th USENIX Security SymposiumUSENIX Association 343

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

fire
fox

Sp
ee

d

Unmodifed
Heap Clearing

Figure 6: Heap clearing has little performance impact. This
chart shows the relative performance of an unmodified glibc
2.3 heap allocator versus the same allocator modified to zero at
free time in a set of user programs. The unmodified runs are
normalized to 1.0. Zero-on-free overheads are less than 7% for
all tested applications.

after it had closed the file. Removing the fclose call
fixed the bug, but we had to touch the sources to do this.
We don’t believe this impacted our performance results.

7.2.2 Stack Clearing Overhead

We implemented stack clearing for applications by mod-
ifying our OS to periodically zero the free stack space in
user processes that have run since the last time we cleared
stacks. We do so by writing zero bytes from the user’s
stack pointer down to the bottom of the lowest page allo-
cated for the stack.

Figure 7 gives the results of running our workload with
periodic stack clearing (configured with a period of 5
seconds) plus our other kernel clearing changes. Just like
heap clearing, periodic stack clearing had little impact
on application performance, with less than a 2% perfor-
mance increase for all our tests.

Immediate Stack Clearing For those applications
with serious data lifetime concerns, the delay inherent
to a periodic approach may not be acceptable. In these
cases, we can perform an analog of our heap clearing
methodology by clearing stack frames immediately when
they are deallocated.

We implemented immediate stack clearing by modify-
ing GCC 3.3.4 to emit a stack frame zeroing loop in every
function epilogue. To evaluate the performance impact
of this change, we compared the performance of a test
suite compiled with an unmodified GCC 3.3.4 against the
same test suite compiled with our modified compiler.

Figure 7 gives the results of this experiment. We see
that overheads are much higher, generally between 10%
and 40%, than for periodic scheduled clearing. Clearly,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
2.e

on

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

fire
fox

S p
ee

d

Unmodified
Periodic Clearing
Immediate Clearing

Figure 7: Comparing stack clearing overheads. This chart
shows the relative performance of our workload with three
strategies: an unmodified run with no stack clearing used as a
baseline, a periodic run with OS scheduled stack zeroing (con-
figured to 5 second intervals) as well as our other kernel zeroing
features, and a immediate run with immediate stack zeroing on
every function return. Periodic zeroing has little performance
overhead. Immediate zeroing has more of a penalty, which may
be acceptable to security-conscience applications.

such overheads are significant, though they may be ac-
ceptable for applications where data lifetime is an utmost
concern.

7.3 Kernel Clearing Overhead
Batch Workload We used Linux kernel builds to stress
our page zeroing changes. A kernel build starts many
processes, each of which modifies many heap, stack, and
static data pages not backed by files. The kernel con-
siders all of these polluted and zeros them within five
seconds of deallocation.

With the ordinary kernel running, three kernel builds
took 184, 182, and 183 seconds, for an average of 183
seconds. With the zeroing kernel, the runs took 188, 184,
and 184 seconds, for an average of 185 seconds, approx-
imately a 1% penalty.

The kernel build zeroed over 1.2 million pages (about
4.8 GB) per run. The actual number of polluted pages
generated was much larger than that, but many of those
pages did not need to be zeroed because they could be
entirely overwritten by pages brought into the page cache
from disk or by copies of pages created when triggering
copy-on-write operations. (As described in section A.2,
we prefer to overwrite polluted data whenever possible.)

Network Workload We evaluated the overhead of ze-
roing by benchmarking performance on 1 Gbps Ethernet,
achieving up to 500 Mbps utilization for large blocks.
We found latency, bandwidth, and CPU usage to be in-

14th USENIX Security SymposiumUSENIX Association 343



Caveats

• some data is never deallocated

• long-living data

• memory leaks

• custom allocators



Discussion

• There is still a gap to the ideal lifetime.

• The data is still in memory while it is used.

• There is always a window of opportunity.

• You have to trust your memory anyway.

• Why bother shrinking the window when 
you can never close it for good?


