
Model-Carrying Code

Sekar, Venkatakrishnan, Basu, Bhatkar, DuVarney
Stony Brook University

presented by Michael Roitzsch

Problem

• people run software from untrusted sources

• all software runs with full user privileges

Solution Space

• violation detected at
runtime

• consumer specifies
policy

• practical
implementations

• violation detected prior
to running

• producer-generated
proof limits policies

• practical difficulties

execution monitoring
 static analysisMCC

Policy

• behavior modelled by externally observable
events (system calls)

• access-control and resource-usage policies

• describe bad sequences of events

• extended finite state automata (EFSA)

• policy-violating traces are accepted

Policy
List admFiles = {“/etc/f1”, “/etc/f2”};
any* · open(f, mode)|((f in admFiles)

|| (mode != O RDONLY))

List fileList = {};
(FileCreateOp(f)| add(f, fileList) || other)*

· (FileDeleteOp(g)| !(g in fileList))

any* · ((socket(d, f)| d != PF LOCAL)
|| FileWriteOp(g))

other

 (mode

any

O_RDONLY))

s1

s2

admFiles := “/etc/*”, “/var/*”

open(f, mode) | (f ∈ admFiles) ‖

other FileCreateOp(f) |

FileDeleteOp(g) |

add(f,fileList)

any

s1

s2

g /∈ fileList

other

FileWriteOP()
socket(domain, flags)
| domain != PF_LOCAL

any

s1

s2

(a) Access control policy (b) History-sensitive policy (c) Sensitive file read policy

Figure 2: Examples of REE policies and their equivalent EFSA representation

enabling condition must hold. When the transition is taken, the
assignments associated with the transition are performed.

EFSA-based policies are expressed in our Behavior Monitoring
Specification Language (BMSL). BMSL permits EFSA to be de-
scribed by defining states, start and final states, and transition rules.
BMSL also permits a dual representation of EFSA using Regular
Expressions over Events (REE) [33]. Just as EFSA extend FSA
with state variables, REEs extend regular expressions with state
variables. For simple policies, REEs tend to be much more concise
and “text-friendly” than EFSAs. Hence in practice, we write most
of our policies using REEs. The BMSL compiler can translate poli-
cies into an EFSA form that is used by the verifier. The EFSA form
may also be used for policy enforcement, as we have done in the
past for the purposes of intrusion detection [4]. [35] establishes the
equivalence of EFSA and REE, so the two notations can be freely
mixed in BMSL. (This capability of BMSL is analogous to the abil-
ity to mix regular expressions and state machine constructs in Lex.)
Further details on REEs and EFSA, including their formal seman-
tics, matching complexity and expressive power can be found in
[35]. Below, we provide a short description of BMSL.

Events. Events may be further classified as follows:

• Primitive events: There are two primitive events associated
with each system call, one corresponding to the system call in-
vocation and the other to its exit. The invocation event has the
same name and arguments as the system call, while the return
event has an “ exit” appended to its name. The arguments of
the entry event include all of the arguments at the point of call.
The arguments to an exit event include all of the arguments at
the point of return, plus the value of the return code from the
system call.

• Abstract events: Abstract events can be used to denote classes
of primitive events, e.g., we may define
FileModificationOps as an event that corresponds to a set
of events that modify files. More generally, abstract events may
be defined using the notation event(args) = pat, where event
denotes the abstract event name, and pat is further defined be-
low.

Patterns. The simplest patterns, called primitive patterns, are of
the form e(x1, ..., xn)|cond/asg, where cond is a boolean-valued
expression on the event arguments x1, ..., xn and state variables,

and asg contains zero or more assignments to state variables. The
scope of event arguments is limited to the primitive pattern within
which it occurs.

Compound patterns are obtained by composing primitive pat-
terns using sequencing operators similar to those in regular expres-
sions. The meaning of patterns is best explained by the following
definition of what it means for a history H to satisfy a pattern:

• event occurrence: e(x1, ..., xn)|cond is satisfied by the event
history consisting of the single event e(v1, ..., vn), if cond eval-
uates to true when variables x1, ..., xn are replaced by the val-
ues v1, ..., vn.

• alternation: pat1||pat2 is satisfied by H if either pat1 or pat2
is satisfied by H .

• sequencing: pat1 ·pat2 is satisfied by an event history H of the
form H1H2 provided H1 satisfies pat1 and H2 satisfies pat2.

• repetition: pat∗ is satisfied by H iff H is empty, or is of the
form H1H2 where H1 satisfies pat and H2 satisfies pat∗.

• negation: !pat is satisfied by H iff pat is not satisfied by H .
Use of negation, is not permitted in BMSL if pat involves se-
quencing or repetition.

The notion of satisfaction extends in the obvious way when state
variables are included, and the details can be found in [35].

We say that a history H matches a policy pat provided that a
prefix of H matches pat.

2.2 Illustrative Examples
Often, it is convenient to group similar events into one abstract

event. For instance, there are a number of system calls that can re-
sult in the creation or modification of a file, such as open, creat,
and truncate. By defining an abstract event:

FileWriteOp(f)= (open(f, mode) | writeFlags(mode))
|| creat(f) || truncate(f)

we can use FileWriteOp subsequently to denote any of these op-
erations. For readability, we have abstracted a test on the value
of mode into a call to a function writeFlags, which returns true
whenever the mode corresponds to opening the file for writing. We
have also omitted trailing arguments to creat and truncate as
we are not interested in their values.

Figure 2 illustrates three simple policy examples using REE as
well as EFSA notation. Note that, the special event any stands for
any event, while other stands for an event other than those match-

Model

• single model must be usable for different
policies

• model should closely capture syscall
behavior

• EFSA to represent syscalls plus arguments

Model Generation

• based on tracing

• learning process should cover program
behavior well

• fully automated

• log all system calls with arguments and
preprocess

Model Generation

1. learn FSA states and transitions

2. learn argument values

3. learn argument relationships

Model

m1

m2 m5

m4

m6 m7

m11 m12

m8

m10

m9

send(sd, . . .)

recv(sd, . . .)
connect(sd, . . .)

close(sd)

m3

close(out fd)

read(log fd, . . .)

close(log fd)

write(out fd, . . .)

read(log fd, . . .)

write(out fd, . . .)

read(log fd, . . .)

O WRONLY, out fd)
open(“/tmp/logfile”,

O RDONLY,log fd)
open(“/var/log/httpd/access log”,socket(PF INET, . . . sd)

Figure 4: Model EFSA for Figure 5

associated with S are candidates for equality with v. Each vari-
able v′ associated with any descendant state S′ of S is a candidate
for the relationship prefix(v, v′) = v and prefix(v, v′) = s.
Similarly, any variable v′′ associated with an ancestor state S′′

of S is a candidate for the relationship prefix(v, v′′) = v′′ and
prefix(v, v′′) = s′′, where s′′ is the string corresponding to state
S′′. Finally, any variable v′′′ associated with a descendant state
S′′′ of an ancestor states of S (such as S′) is a candidate for the re-
lationship prefix(v, v′′′) = s′′. If only a (possibly empty) prefix
of s is present in the trie, then the treatment is similar, except that
there will be no descendant states (such as S′) mentioned above.

Once the candidates for relationship with the current instance
of v are identified, they are compared with the candidates for the
previous occurrence of v in the trace, and only the common rela-
tionships are preserved. At this point, note that v would be stored in
a state Sold which corresponds to its previous value sold. v is then
deleted from Sold, and inserted into S. The state Sold is deleted if it
is no longer associated with any variables, and the same is done for
the ancestors of Sold. The new state S is created if it is not already
present.

For suffix relationships, the exact same algorithm is used, but
the tries are constructed after reversing the strings. In addition, to
improve the speed of the algorithm, we can restrict the lengths of
paths from S to states S′, S′′ and S′′′ described above.

The final step of the algorithm is to prune redundant relation-
ships. Suppose that a program opens a file at location P0 and
then performs read operations on this file from n different locations
L1, ..., Ln. Let x0, x1, ..., xn be the corresponding state variables.
The above algorithm will associate the set {x1, ..., xn} with x0,
{x0, x2, ..., xn} with x1 and so on. Obviously, this is redundant
information — for instance, we can associate {x0} with x1, {x1}
with x2 and so on. Note that such pruning is difficult to perform
during the learning phase itself. This is because premature pruning
can lose information. For instance, the first two occurrences of x2

may have been equal to both x1 and x0, but subsequent occurrences
may be equal only to x0. Due to premature pruning, it is possible
to lose out on such information.

We use the example shown in Figure 5 to illustrate model extrac-
tion. This program is a simplified version of a hypothetical free-
ware program which analyzes web server logs for unusual activity.
(Our experience with a real program that analyzes web logs is de-
scribed in Section 6.) In particular, the log entries are compared
against signatures of known attacks. Since the signature set is con-

stantly updated as new attacks are discovered, it is better for the an-
alyzer program to download these signatures from a central server
rather than encoding them within the analyzer program. Hence, the
first step in the execution of the example program is to connect to
this signature server over the network, and download a set of sig-
natures. It then opens the log file, and matches each line in the log
file with the signatures. To simplify the example, we have used just
a single pattern as a signature. In addition, we do not check error
cases. Any matches are written into an output file. The lines of
code where system calls are made by the program are marked with
the symbol “ ” in Figure 5.

Figure 4 shows an abstracted version of the EFSA learned by the
above algorithm for the example program. The abstracted details

int main(int argc, char *argv[]) {
int sd, rc, i, log fd,out fd,flag = 1;
struct sockaddr in remoteServAddr;
char recvline[SIG SIZE+1], sendline[SIG SIZE+1];
char buf[READ SIZE];

init remote server addr(&remoteServAddr,...);
init sendmsg(sendline,...);
sd = socket(PF INET,SOCK STREAM,0);
connect(sd, (struct sockaddr*)&remoteServAddr,sizeof(...));
send(sd, sendline, strlen(sendline)+1,0);
recv(sd, recvline, SIG SIZE,0);
recvline[SIG SIZE] =’\0’;
log fd = open(”/var/log/httpd/access log”,O RDONLY);
out fd = open(”/tmp/logfile”,O CREAT|O WRONLY);
close(sd);
while (flag!=0) {

i = 0;
do {

rc=read(log fd,buf+i,1);
if (rc == 0) flag =0;

} while (buf[i++] != ’\n’ && flag != 0);
buf[i]=’\0’;
if (strstr(buf,recvline) !=0)

write(out fd,recvline,SIG SIZE);
}
close(log fd);
close(out fd);
return 0;

}

Figure 5: A Freeware Program for Web Log Analysis

Verification

• build product automaton of model and
policy

• check for satisfyability

• some conditions need to be evaluated
optimistically

• present conflict summary to the user and
allow policy adaption

Enforcement

• validate actual syscalls against the model at
runtime

• on violation, program is malicious or model
inaccurate

• abort application

Enforcement

Application Overhead

xpdf 30%

gaim 21%

http-analyze 24%

Criticism

• model might be too loose due to optimistic
aggregation – false negatives

• model might be too tight due to insufficient
trace coverage – false positives

• termination especially on corner cases,
where you want your app to exit gracefully

• Return error instead of termination?

Criticism

• Are the policies readable?

• they seem retrofitted

• Are they more suitable to blacklists?

• models do not compose easily, so no
individual library models

• would have been cool for browser plugins

Criticism

• Multithreading anyone?

• I am not convinced that stateless filters
would not solve the same problems much
easier.

• far less overhead

• readable policies

• already deployed

AppArmor
/usr/sbin/ntpd flags=(complain) {

 #include <abstractions/base>

 #include <abstractions/nameservice>

 #include <abstractions/xad>

 capability net_bind_service,

 capability setgid,

 capability setuid,

 capability sys_chroot,

 capability sys_time,

 network inet dgram,

 /etc/ntp.conf r,

 /etc/ntp/drift* rwl,

 /etc/ntp/keys r,

 /var/run/ntpd.pid w,
}

Seatbelt
(deny default)
(allow process-fork)
(allow process-exec (regex "^/usr/sbin/ntpd$"))
(allow sysctl-read)
(allow network*)
(allow file-read-data file-read-metadata

 (regex "^(/private)?/etc/ntp\\.(conf|keys)$"))
(allow file-read-data file-read-metadata file-write-data

 (regex "^(/private)?/var/db/ntp\\.drift(\\.TEMP)?$"))
(allow file-write* file-read-data file-read-metadata

 (regex "^(/private)?/var/run/ntpd\\.pid$"))
(allow time-set)
(import "bsd.sb")

