
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Preventing Memory Error
Exploits with WIT
(P. Aktridis et al.)

Dresden, 2008-07-15

presented by Bjoern Doebel

Motivation

• Memory errors
– Buffer overflows
– Dangling pointers
– Multiple frees

• Lots of tools
• Still account for nearly half of all security

vulnerabilities.
• Crappy tools?

• Usability
• Performance Overhead
• Bug coverage

Reading Group History

• Vigilante [Costa05] & Bouncer [Costa07]
– Detect and propagate exploits through the

internet (self-certifying alerts)
– Aim: identify malicious input and automatically

generate filters
• Data-Flow Integrity Checking [Costa06]

– Static checking: for each memory location
determine the write locations that are allowed
to modify it

– Runtime instrumentation: for each write
operation check, whether memory target is in
set of allowed writes

– Up to 100% CPU and 50% memory overhead

Write Integrity Testing (WIT)

• Static Analysis:
– Compute CFG
– Determine objects that can be written by each

instruction (safe vs. unsafe operations and
objects)

• Compiler Extension
– Insert runtime checking and guard objects

• Runtime Checking
– Check all unsafe operations using object

“colors”

Statically analyzing a memory exploit

Safe vs. unsafe variablesSafe vs. unsafe instructions

Adding instrumentation

• For each unsafe variable p:
– Calculate p's points-to set
– Assign individual color {2..256}
– Assign same color to unsafe operations writing

to p

• Merge colors for overlapping points-to-sets

• Generate code checking colors for each
unsafe instruction

• Guards between unsafe objects (may still
have the same color)

Instrumentation (2)

• Checks only for unsafe write operations
– Explicitly do not catch out-of-bounds reads

• Wrap heap malloc/free routines to update
color table

• Instrument functions to update stack frames
before and after function execution

• Separate version of WIT to catch libc exploits

• Similar handling of function pointers

Performance

• SPEC and Olden benchmarks
• 256 colors seem to be enough

Remarks / Questions

• No support for user-defined memory
allocators (but easily solved).

• Can we think of an application where 256
colors are insufficient?
– Need many dynamic allocations of small,

independent objects

• Given the fact, that we find unsafe objects
during SA, why not just smash the
programmer's head with a large wooden
hammer? (thx, Marcus)

	Hier steht der Titel der Power Point Präsentation.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

