

Department of Computer Science, Institute for System Architecture, Operating Systems Group

FS²: Dynamic Data Replication in Free Disk Space for Improving Disk Performance and Energy Consumption

Hai Huang, Wanda Hung, Kang G. Shin

Presented by Carsten Weinhold

Paper Reading Group, 2008-09-18

- Many aspects of magnetic disks improved, except for access times
- Seek times / rotational delay can reduce throughput considerably
- File systems try to minimize seeking (e.g., cylinder groups in FFS, Ext2, ...)
- Works for many workloads, but:
 - Static decision on data placement
 - No knowledge about future access patterns
 - Access locality sometimes impossible

Figure 1: Part (a) shows disk sectors that were accessed when executing a *cvs* -*q update* command within a CVS local directory containing the Linux 2.6.7 source code. Part (b) shows the disk head movement within a 1-second window of the disk trace shown in part (a).

- Manage disk layout dynamically like other resources
- "Reallocate" data and meta data based on observed access patterns
- Keep copies of disk blocks in free space, there's plenty of it!
- Seek to closest copy relative to disk heads
- Benchmark workload "cvs update":
 - Ext2: **33** seconds
 - FS²: **22** seconds
 - Less seeking, less energy

- Hash table for info about replicas:
 - Each entry stores:
 - Original block number
 - Replica block number
 - Last access time
 - Reference count
 - Kept in kernel memory
 - Flushed to disk periodically and on unmount
- Replicas are freed when:
 - Blocks are written to (no expensive updates)
 - Low on disk space

- Modified *anticipatory I/O scheduler:*
 - Read original if there is no replica
 - Read replica if:
 - Blocks contiguous on disk
 - Closer to disk head than original
- Block device driver decides which blocks to replicate:
 - Temporally related blocks are good candidates
 - Identifies *hot areas* with much disk activity
 - Outside blocks replicated into hot area

- Modified Ext2 file system:
 - Assists block device driver in finding free space for replicas
 - Notifies block device driver about deallocated / truncated blocks
 - Monitors high, low, and critical watermark
 - Maintains special file with inode #9 containing persistent hash table
- User-level tools
 - mkfs2, chkfs2
 - Explicitly control replica management

	Disk	Perfor	mance Ir	Energy	
	Busy	T_A	T_s	T_r	Improvement
FS ² -static	23%	24%	53%	-1.6%	31%
FS ² -dynamic	17%	50%	72%	31%	55%

Figure 11: For the TPC-W benchmark, parts (a–c) show disk access time for the 1st, the 2nd, and the 7th FS²-dynamic run.

	Disk	Perfor	mance Ir	Energy	
	Busy	T_A	T_s	T_r	Improvement
FS^2	73%	41%	38%	53%	40%

X Server + KDE Benchmark

	Disk	Perform	mance Ir	Energy	
	Busy	T_A	T_s	T_r	Improvement
FS^2	26%	44%	53%	47%	46%

	Disk	Perfor	mance Ir	Energy	
	Busy	T_A	T_s	T_r	Improvement
FS^2	4.2%	69%	78%	68%	71%

- Make data placement on disk dynamic based on observed workload
- Replicate data to reduce disk access times (41-68% improvement)
- User-perceivable performance improvements for relevant workloads (16-34%)
- Lower energy consumption due to less seeking / rotational delay (40-71%)

- Large improvements, but: "cvs update" still slow and lot of seeking activity
- What do we need?
 - Asynchronous I/O in applications to allow I/O scheduler to optimize globally?
 - I/O priorities? Hint low-latency vs. bulk I/O?
 - More aggressive read ahead?
 - Flash?
- Energy calculations accurate? What about increased CPU load?
- ZFS "ditto mode"?

 Hai Huang, Wanda Hung, Kang G. Shin, "FS2: Dynamic Data Replication in Free Disk Space for Improving Disk Performance and Energy Consumption", SOSP '05, Brighton, UK