
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

OS Paper Reading Group
Winter Term 2008/09

Dresden, 2008-10-15

Administrative Stuff

• Website: www.tudos.org -> Teaching -> Reading
Group

• Mailing List:
http://os.inf.tu-dresden.de/mailman/listinfo/paper-reading-group

• Modus
– 1 paper each week

• Related to systems research
• 10-15 min presentation

– Paper content
– Questions regarding the paper / the general topic

• Discussion

– Choice of paper
• Staff members propose 3 alternatives, voting on the

mailing list.
• Students pick a paper either from the list on the web

site or any other source.

– Pizza anyone?

http://www.tudos.org/
http://os.inf.tu-dresden.de/mailman/listinfo/paper-reading-group

Earning credits (2 SWS)

• Send a paper summary to doebel@tudos.org until the
day before the presentation (23:59:59)
– Explain what you understood from the paper.
– Ask questions about things you did not understand.
– Mention things you like/dislike about the paper.
– ...

• Present one paper yourself during the term.
– English (though this is not a test of your language

skills!)
– Show that you understood the paper.
– Prepare questions for discussion.
– Extended knowledge (e.g., related work) can be a

plus.

mailto:doebel@tudos.org

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Configuration Debugging as
search – Finding the Needle in
the haystack
(A. Whitaker et al.)

Dresden, 2008-10-15

presented by Bjoern Doebel

Change-induced failure

• Systems often break after configuration
changes
– Software patch
– Modification of security policy
– Administrator actions

• Gray, 1985: 42% of all failures are human-
induced.

• Experts needed to find bugs.

Goal: Automate diagnosis

Chronus workflow

Log system
changes

User-provided
software

probe

Chronus
(when?)

Log Analysis
(why?)

Logging

• Traditional checkpointing
– Persistent + transient state
– Slow at runtime

• Incremental logging
– Faster at runtime
– Slow at state reinstantiation

• Focus on persistent state (disk)
• Dedicated mechanism for tracking changes at

block level -> Time-Travel-Disk

Using Chronus

• User-defined interval
– Start & end state need to differ wrt to bug

• Reinstantiation of system states using VMM
– Cheaper than real HW
– Lose insight into some error causes (drivers...)
– Run user-defined probes

• Binary search through states in interval
– Search in O(log n)
– Problem: multiple changes in interval?

• Simulated annealing (random restart,
random intervals)

Bug detection

• User-defined probes
• External vs. internal probes
• Success-oriented vs. failure-oriented probes

Evaluation

• Observation: TT-disk overhead negligible
most of the time

• Logs increase heavily
– Compression helps (at the cost of reinstatiation

overhead)
– Disable logging for certain operations

• Debug execution time ~ minutes

Do we need TT-disks at all?

• TT-disk enable us to reinstantiate the system
at every block-level modification.
– Millions of possible states.
– Not guaranteed that the system is even

bootable in each of these states.
– My intuition: could get less states and the

same feature set using FS-level checkpointing.
• e.g., only create a state after a file has been

completely written
• git bisect as a real world example

– However: we wouldn't need TT-disks then...

Faster testing with delta checkpoints?

• More complex systems -> Log size increase ->
Search time increase

• Most of Chronus' test run time spent rebooting
• Systems get more dynamic

– Kernel modules are old already
– Kernel updates at runtime (Makris, EuroSys 2007)
– SysFS tuning of kernel parameters

• Hypothesis: future configuration changes will not
necessarily rely on block-level interaction
– Always restart from an initial CoW virtual machine
– Re-apply delta-checkpoints of dynamic configuration

changes

Could this be faster than cold-rebooting the VM?
Is this relevant?

	Folie 1
	Folie 2
	Folie 3
	Hier steht der Titel der Power Point Präsentation.
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12

