
Department of Computer Science Institute for System Architecture, Operating Systems Group

CARSTEN WEINHOLD

TRANSACTIONAL
FLASH
Vijayan Prabhakaran, Thomas L. Rodeheffer, Lidong Zhou

TU Dresden Transactional Flash

MOTIVATION

2

■ Transactions have proven useful:

■ File systems

■ Databases systems

■ Common approaches:

■ Copy on write

■ Write ahead logging

■ Hard to get right

■ Everybody reinvents the wheel ...

TU Dresden Transactional Flash

BETTER DISKS?
■ Transaction support could be built into disk

■ Much simpler file systems / databases

■ Problem:

■ Copy on write causes fragmentation

■ Slow seeks needed when reading

■ Solutions:

■ Reorganize data in cleaning process

■ Checkpointing + update home location
3

TU Dresden Transactional Flash

FLASH BASICS
■ Typical solid state disk:

■ Controller + multiple flash packages

■ Small mount of RAM to buffer I/O requests,
internal data structures

■ Data organization:

■ Packages contain planes, blocks, pages

■ 128 bytes of metadata for each 4 KB page

■ Spare memory for data from damaged areas

4

TU Dresden Transactional Flash

HOW IT WORKS
■ Random reads / writes are fast

■ Overwriting is slow:

■ Entire block must be erased

■ Takes in the order of milliseconds

■ Limited number of erase / write cycles

■ Out-of-place updates avoid overwriting

■ Garbage collection reclaims old pages

■ Wear leveling minimizes per-block erasure
5

TU Dresden Transactional Flash

TXFLASH

6

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 149

!"#$ %&'

(%)%*%+$

,-+)$.+

!"#$%&$'(#)* &+'"$* ,%-.* !"#$%

/0..")

102"3

4+0#%)"0&

1%-$5

6%5*%2$

/0##$3)05

7$308$5-

102"3

7$.%9 :%*#$!5$$ *#03;+ :< =$)%'%)%

!#%+> ?%3;%2$+

:<!#%+> /0&)50##$5

!:1

Figure 1: Architecture of a TxFlash Device. The controller runs
the logic for ensuring atomicity, isolation, and recovery of transactions.
Data and metadata are stored on the flash packages.

2.2 TxFlash API and Architecture

Figure 1 shows a schematic of TxFlash. Similar to an
SSD, TxFlash is constructed with commodity flash pack-
ages. TxFlash differs from an SSD only in the API it
provides and in the firmware changes to support the new
API.
Transactional Model. TxFlash exports a new interface,
WriteAtomic(...), which allows an applica-
tion to specify a transaction with a set of page writes,

to . TxFlash ensures atomicity, i.e., either all the
pages are written or none are modified. TxFlash further
provides isolation among multiple WriteAtomic calls.
Before it is committed, a WriteAtomic operation can
be aborted by calling an Abort. By ensuring atomicity,
isolation, and durability, TxFlash guarantees consistency
for transactions with WriteAtomic calls.

In addition to the remap table and free-blocks queue
maintained in an SSD, TxFlash further keeps track of in-
progress transactions. When a transaction is in progress,
the isolation layer ensures that no conflicting writes (i.e.,
those updating the same pages as the pending transac-
tions) are issued. Once a transaction is committed, the
remap table is updated for all the pages in the transac-
tion.

At the core of TxFlash is a commit protocol that en-
sures atomicity of transactions despite system failures. A
commit protocol includes both a commit logic that is ex-
ecuted when a transaction is committed, and a recovery
logic that is executed at boot time. The latter reconstructs
the correct mapping information based on the informa-
tion persisted on the flash. The actions of other modules,
such as the garbage collector, depend on the actual com-
mit protocol used.

2.3 Rationale for TxFlash
There are two main points in favor of TxFlash: utility and
efficiency. TxFlash is useful because its API can benefit
a large number of storage applications. TxFlash is effi-
cient because the underlying SSD architecture matches
the API well.
Interface Design. We choose to support a limited no-
tion of transactions in TxFlash because we believe this
choice reflects a reasonable trade-off between complex-
ity and usefulness. The WriteAtomic interface is de-
sirable to any storage system that must ensure consis-
tency of multi-page writes despite system failures; file
systems and database systems are known examples.

We choose not to implement full-fledged transactions,
where each transaction consists of not only write opera-
tions, but also read operations. This is because they in-
troduce significant additional complexity and are overkill
for applications such as file systems.

Compatibility is often a concern for a new API. This
is not an issue in this case because we preserve the sim-
ple disk APIs so that existing systems can be run directly
on TxFlash. However, by using the additional transac-
tional constructs certain parts of a system can be made
simpler and more efficient. We show later in the pa-
per (4) that while Ext3 can be run directly on TxFlash,
parts of its journaling code can be simplified to use the
new WriteAtomic construct.
Transactions on SSDs. Compared to hard disks, SSDs
are particularly ideal for supporting transactions for the
following reasons.

Copy-on-write nature of SSDs. Extending a log-
structured system to support transactions is not new [23].
The FTL already follows the CoW principle because of
the write-erase-write nature of the flash pages and wear-
leveling. Extending FTL to support transactions intro-
duces relatively little extra complexity or overhead.

Fast random reads. Unlike hard disks, fragmentation
is not an issue in SSDs, again because of their inher-
ent solid-state nature: an SSD can rapidly access random
flash-memory locations in constant time. Although SSDs
perform cleaning for freeing more re-usable space, there
is no need for data re-organization for locality.

High concurrency. SSDs provide a high degree of con-
currency with multiple flash packages and several planes
per package, and multiple planes can operate concur-
rently. Enabled with such high parallelism, SSDs can
support cleaning and wear-leveling without affecting the
foreground I/O.

New interface specifications. Traditional storage inter-
faces such as SATA do not allow the devices to export
new abstractions. Since SSDs are relatively new, alterna-
tive specifications can be proposed, which may provide
the freedom to offer new device abstractions.

TU Dresden Transactional Flash

TXFLASH

7

■ TxFlash builds on top of existing flash
storage controllers

■ Introduces additional command:

WriteAtomic(p0, p1, ... pn-1)

TU Dresden Transactional Flash

REDO LOGGING
■ Most file systems use redo logging:

■ Intention records written to storage:

■ Pages with data

■ Metadata describing location, etc.

■ Extra write for commit record, after
intention records are persistent

■ Data from log copied to home locations in
checkpoint process

■ Recovery: redo committed transactions
8

TU Dresden Transactional Flash

TXN PROTOCOLS

9

150 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

!"#$ %&''($$)*

+),#(&- .

/0"%1 2&(-$),3

4"%1 5&(-$),

67%8(% 6&''($/%3

9('28) 67%8(%

6&''($/03

:,"*($(&-"8

6&''($/"3

;"$"
5"<) . "-*

=),#(&- .

>)?$ 5"<) .

"-* =),#(&- .

/-)?$@8(-13

:,"-#"%$(&- A;

;"$"
5"<) . "-*

=),#(&- .

>)?$ 5"<) .

"-* =),#(&- .

/-)?$@8(-13

;"$"
5"<) . "-*

=),#(&- .

Figure 2: Page Format. Information stored in the metadata portion
of a flash page by various commit protocols.

3 Commit Protocols

To ensure the atomicity of transactions, TxFlash uses a
commit protocol. The protocol specifies the steps needed
to commit a transaction, as well as a recovery procedure.
The recovery procedure is executed after a system reboot
to determine which transactions are committed based on
the persistent state on the storage. Commit protocols
tend not to update the data in-place and therefore in-
variably require a separate garbage collection process,
whose purpose is to release the space used by obsolete
or aborted transactions.

3.1 Traditional Commit (TC)
Modern journaling file systems such as Ext3 [28], IBM
JFS [3], XFS [26], and NTFS [25] use a form of redo
logging [13] for atomicity; we refer to this mechanism
as the traditional commit protocol. In traditional com-
mit, new data for each page is written to the storage de-
vice as an intention record, which contains a data portion
and a metadata portion. The metadata portion stores the
identity of the page and the transaction ID as shown in
Figure 2(a). Once all the writes of the intention records
have completed successfully, a commit record is written
to the storage device. Once the commit record is made
persistent, the transaction is committed. When recover-
ing during a reboot, traditional commit decides whether
a transaction is committed or not based on the existence
of the corresponding commit record.

Typically, the intention records and the commit
records are written into a log. The updates in commit-
ted intention records are written in-place to the home lo-
cations by a checkpoint process. Once checkpointing is
completed, all the intention records and commit records
are garbage collected by truncating the log.
Traditional Commit on SSDs. With an SSD as the un-
derlying storage device, thanks to the indirection pro-
vided by the remap table, no separate checkpointing is
necessary: the logical pages can be remapped to the new
locations when a transaction commits. Also, all writes
within the same transaction can be issued concurrently,

thereby exploiting the inherent parallelism on an SSD.
However, the need for the separate commit record in

traditional commit may become particularly undesirable.
The commit record write must be issued only after all the
intention record writes are completed; such write order-
ing introduces the latency of an extra write per transac-
tion. Because of the absence of a separate checkpointing
process, a special garbage collection process is needed
for commit records: a commit record can be released
only after all the intention records of the correspond-
ing transaction are made obsolete by later transactions.
Both the performance and space overheads introduced
by commit records are particularly significant for small
transactions. Group commit [7] was designed to reduce
some of these overheads but it works well only when
there are multiple operations that can be delayed and
grouped together.

3.2 Simple Cyclic Commit (SCC)
Instead of using commit records to determine whether a
transaction is committed or not, a cyclic commit proto-
col stores a link to the next record in the metadata of an
intention record (i.e., the logical page of an SSD) and
creates a cycle among the intention records of the same
transaction. This eliminates the need for a separate com-
mit record for each transaction, thereby removing the
space and performance overheads.

Figure 2(b) shows the intention record used by the
cyclic commit, where the next page and version num-
bers are additionally stored in the metadata portion as the
next-link. For each transaction, the next-link information
is added to the intention records before they are concur-
rently written. The transaction is committed once all the
intention records have been written. Starting with any in-
tention record, a cycle that contains all the intentions in
the transaction can be found by following the next-links.
Alternatively, the transaction can be aborted by stopping
its progress before it commits. Any intention record be-
longing to an aborted transaction is uncommitted.

In the event of a system failure, TxFlash must be
restarted to recover the last committed version for each
page. The recovery procedure starts by scanning the
physical pages and then runs a recovery algorithm to
classify the intention records as committed or uncommit-
ted and identify the last committed version for each page
based on the metadata stored in the physical pages.

We use to refer to the set of intention records (in
terms of their logical page numbers and versions) ob-
tained by scanning the stable storage and for the set of
intention records that are referenced by the next-link field
of any intention record in . All records in are
present on the storage, but not referenced by any other
record (represents set difference); similarly, all records

TU Dresden Transactional Flash

CYCLIC COMMIT

10

■ Requirement: data + metadata can be
stored together efficiently

■ No extra write for commit record:

■ Each intention record has next link

■ Last intention record points to first one

■ Concurrent writes possible for all records

■ Recovery: full cycle in storage describes
committed transaction

TU Dresden Transactional Flash

SCC

11

152 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

!" #"

$%&'

("

)
'
*+
,-
.
.
/
0
1
'
*

2"

3"

4"

Figure 4: An Example TxFlash System State with SCC.

Let represent the highest version number for a page
and be the intention record with the highest ver-

sion number. The goal of the recovery algorithm is to
determine, for every page , whether is commit-
ted or uncommitted using the following analysis. Let

. These values are available from the
metadata portion of the intention record. Let be
the highest version number of any intention that exists on
the storage device for page . There are three cases.
I. : is a committed intention because
is committed because of the presence of (SCC In-
variant), and so is (Cycle Property). For example,
consider in Figure 4, whose next-link is . Since
the highest version for is , is committed and
therefore is committed too.
II. : is an uncommitted intention. The rea-
soning is as follows: the transaction involving could
not have completed, because if it had, there would be
an intention of page with a version number at least as
high as . Consider in Figure 4, whose next-link
is greater than the highest version numbered intention
for page . Therefore, is uncommitted.
III. : links to another highest version num-
bered intention , and the answer is the same as for the
intention , which may be determined recursively. If
this results in a cycle, then all of the involved intentions
are committed intentions (Cycle Property). For example,
in Figure 4, following the next-link from , a cycle is
detected and is classified as committed.

For each page, the last committed intention is identi-
fied using the above analysis and the remap table is up-
dated accordingly. Since each logical page is visited only
once and only the top two versions are considered for
each logical page, the running time of the SCC recovery
takes , where is the number of logical pages.

3.3 Back Pointer Cyclic Commit (BPCC)
The SCC has the advantage that it can be implemented
relatively easily with minimal changes to the recovery
and garbage collection activities normally performed by

!" #" $" %"

&'()

*"

+
)
,-
./
0
0
1
2
3
)
,

4"

5"

6"

7"

#'89 &/.0:),

*/22.::); +),-./0

<08/22.::); +),-./0

*/22.::); '0; (',3'()
8/==)8:); +),-./0

>)?:@=.09

A.--.0(+),-./0

Figure 5: An Example TxFlash System State with BPCC.

an SSD. The simplicity of SCC hinges on the SCC In-
variant, which necessitates the erasure of uncommitted
intentions before newer versions can be created. The
needed erasure could add to the latency of the writes. We
introduce Back Pointer Cyclic Commit (BPCC), a varia-
tion of the SCC, that does not require such erasures.

BPCC indicates the presence of uncommitted inten-
tion records by adding more information to the page
metadata. Specifically, the intention record for a page
also stores the last committed version number for that
page through a back pointer, . That is, before
writing an intention of a page , in addition to the
identity of the page and the next-link, a pointer to the
last committed version of , say (where), is
also stored. Typically, the last committed version num-
ber will be the version number immediately previous to
the version number of the intention (i.e.,). This
last committed version number provides enough infor-
mation to determine whether uncommitted intentions are
left behind by aborted transactions. Specifically, if there
exists a , where , then must be
uncommitted. Figure 2(c) shows the necessary additions
to the metadata to include the back pointer.

For any intention record , an intention record
with satisfying is a straddler
of as it straddles the uncommitted intention . It is
important to notice that a committed intention can never
be straddled. For correct operation, BPCC upholds the
following BPCC Invariant:

BPCC Invariant: For a highest version numbered in-
tention record , let . If there

152 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

!" #"

$%&'

("

)
'
*+
,-
.
.
/
0
1
'
*

2"

3"

4"

Figure 4: An Example TxFlash System State with SCC.

Let represent the highest version number for a page
and be the intention record with the highest ver-

sion number. The goal of the recovery algorithm is to
determine, for every page , whether is commit-
ted or uncommitted using the following analysis. Let

. These values are available from the
metadata portion of the intention record. Let be
the highest version number of any intention that exists on
the storage device for page . There are three cases.
I. : is a committed intention because
is committed because of the presence of (SCC In-
variant), and so is (Cycle Property). For example,
consider in Figure 4, whose next-link is . Since
the highest version for is , is committed and
therefore is committed too.
II. : is an uncommitted intention. The rea-
soning is as follows: the transaction involving could
not have completed, because if it had, there would be
an intention of page with a version number at least as
high as . Consider in Figure 4, whose next-link
is greater than the highest version numbered intention
for page . Therefore, is uncommitted.
III. : links to another highest version num-
bered intention , and the answer is the same as for the
intention , which may be determined recursively. If
this results in a cycle, then all of the involved intentions
are committed intentions (Cycle Property). For example,
in Figure 4, following the next-link from , a cycle is
detected and is classified as committed.

For each page, the last committed intention is identi-
fied using the above analysis and the remap table is up-
dated accordingly. Since each logical page is visited only
once and only the top two versions are considered for
each logical page, the running time of the SCC recovery
takes , where is the number of logical pages.

3.3 Back Pointer Cyclic Commit (BPCC)
The SCC has the advantage that it can be implemented
relatively easily with minimal changes to the recovery
and garbage collection activities normally performed by

!" #" $" %"

&'()

*"

+
)
,-
./
0
0
1
2
3
)
,

4"

5"

6"

7"

#'89 &/.0:),

*/22.::); +),-./0

<08/22.::); +),-./0

*/22.::); '0; (',3'()
8/==)8:); +),-./0

>)?:@=.09

A.--.0(+),-./0

Figure 5: An Example TxFlash System State with BPCC.

an SSD. The simplicity of SCC hinges on the SCC In-
variant, which necessitates the erasure of uncommitted
intentions before newer versions can be created. The
needed erasure could add to the latency of the writes. We
introduce Back Pointer Cyclic Commit (BPCC), a varia-
tion of the SCC, that does not require such erasures.

BPCC indicates the presence of uncommitted inten-
tion records by adding more information to the page
metadata. Specifically, the intention record for a page
also stores the last committed version number for that
page through a back pointer, . That is, before
writing an intention of a page , in addition to the
identity of the page and the next-link, a pointer to the
last committed version of , say (where), is
also stored. Typically, the last committed version num-
ber will be the version number immediately previous to
the version number of the intention (i.e.,). This
last committed version number provides enough infor-
mation to determine whether uncommitted intentions are
left behind by aborted transactions. Specifically, if there
exists a , where , then must be
uncommitted. Figure 2(c) shows the necessary additions
to the metadata to include the back pointer.

For any intention record , an intention record
with satisfying is a straddler
of as it straddles the uncommitted intention . It is
important to notice that a committed intention can never
be straddled. For correct operation, BPCC upholds the
following BPCC Invariant:

BPCC Invariant: For a highest version numbered in-
tention record , let . If there

TU Dresden Transactional Flash

SCC VS. BPCC
■ Simple Cyclic Commit:

■ No overlapping transactions (isolation)

■ Uncommited intention records must be
erased before starting new transaction

■ Back Pointer Cyclic Commit:

■ Extra back pointer: last committed
transaction

■ Avoids erase cycle after aborted transaction

■ More complex garbage collection / recovery
12

TU Dresden Transactional Flash

BPCC

13

152 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

!" #"

$%&'

("

)
'
*+
,-
.
.
/
0
1
'
*

2"

3"

4"

Figure 4: An Example TxFlash System State with SCC.

Let represent the highest version number for a page
and be the intention record with the highest ver-

sion number. The goal of the recovery algorithm is to
determine, for every page , whether is commit-
ted or uncommitted using the following analysis. Let

. These values are available from the
metadata portion of the intention record. Let be
the highest version number of any intention that exists on
the storage device for page . There are three cases.
I. : is a committed intention because
is committed because of the presence of (SCC In-
variant), and so is (Cycle Property). For example,
consider in Figure 4, whose next-link is . Since
the highest version for is , is committed and
therefore is committed too.
II. : is an uncommitted intention. The rea-
soning is as follows: the transaction involving could
not have completed, because if it had, there would be
an intention of page with a version number at least as
high as . Consider in Figure 4, whose next-link
is greater than the highest version numbered intention
for page . Therefore, is uncommitted.
III. : links to another highest version num-
bered intention , and the answer is the same as for the
intention , which may be determined recursively. If
this results in a cycle, then all of the involved intentions
are committed intentions (Cycle Property). For example,
in Figure 4, following the next-link from , a cycle is
detected and is classified as committed.

For each page, the last committed intention is identi-
fied using the above analysis and the remap table is up-
dated accordingly. Since each logical page is visited only
once and only the top two versions are considered for
each logical page, the running time of the SCC recovery
takes , where is the number of logical pages.

3.3 Back Pointer Cyclic Commit (BPCC)
The SCC has the advantage that it can be implemented
relatively easily with minimal changes to the recovery
and garbage collection activities normally performed by

!" #" $" %"

&'()

*"

+
)
,-
./
0
0
1
2
3
)
,

4"

5"

6"

7"

#'89 &/.0:),

*/22.::); +),-./0

<08/22.::); +),-./0

*/22.::); '0; (',3'()
8/==)8:); +),-./0

>)?:@=.09

A.--.0(+),-./0

Figure 5: An Example TxFlash System State with BPCC.

an SSD. The simplicity of SCC hinges on the SCC In-
variant, which necessitates the erasure of uncommitted
intentions before newer versions can be created. The
needed erasure could add to the latency of the writes. We
introduce Back Pointer Cyclic Commit (BPCC), a varia-
tion of the SCC, that does not require such erasures.

BPCC indicates the presence of uncommitted inten-
tion records by adding more information to the page
metadata. Specifically, the intention record for a page
also stores the last committed version number for that
page through a back pointer, . That is, before
writing an intention of a page , in addition to the
identity of the page and the next-link, a pointer to the
last committed version of , say (where), is
also stored. Typically, the last committed version num-
ber will be the version number immediately previous to
the version number of the intention (i.e.,). This
last committed version number provides enough infor-
mation to determine whether uncommitted intentions are
left behind by aborted transactions. Specifically, if there
exists a , where , then must be
uncommitted. Figure 2(c) shows the necessary additions
to the metadata to include the back pointer.

For any intention record , an intention record
with satisfying is a straddler
of as it straddles the uncommitted intention . It is
important to notice that a committed intention can never
be straddled. For correct operation, BPCC upholds the
following BPCC Invariant:

BPCC Invariant: For a highest version numbered in-
tention record , let . If there

TU Dresden Transactional Flash

EVALUATION

14

TU Dresden Transactional Flash

TXN SIZE

15

156 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a database stress test by issuing 10,000 credit-debit-like
operations on the TxExt3 file system. The TxExt3 file
system issues one transaction at a time, so there is lit-
tle concurrency in the workload. In our experiments, the
transaction size varies among the benchmarks and is de-
termined by the sync intervals. Since IOzone and Linux-
build do not issue any sync calls, their transaction sizes
are quite large (over 2 MB); Maildir and TPC-B issue
synchronous writes and therefore result in smaller trans-
actions (less than 100 KB).

Ext3 provides only a limited transaction abort func-
tionality. After a transaction abort, Ext3 switches to
a fail-stop mode where it allows only read operations.
To evaluate the performance of the cyclic commit under
transaction aborts, we use a synthetic workload genera-
tor, which can be configured to generate a wide variety
of transactions. The configuration parameters include the
total number of transactions, a distribution of transaction
sizes and inter-arrival times, maximum transaction con-
currency, percentage of transaction aborts, and a seed for
the random generator.

We configure our simulator to represent a 32 GB
TxFlash device with 8 fully-connected 4 GB flash pack-
ages and use the flash package parameters from the Sam-
sung data sheet [21]. The simulator reserves 15% of its
pages for handling garbage collection. I/O interleaving
is enabled, which lets the simulator schedule up to 4 I/O
operations within a single flash package concurrently.

Model Checking. We verify the cyclic commit al-
gorithm by specifying the SCC and BPCC protocols
in TLA+ and checking them with the TLC model
checker [10]. Our specifications model in-progress up-
dates, metadata records, page versions, aborts, garbage
collection, and the recovery process, but not issues such
as page allocation or I/O timing. Our specifications
check correctly up to 3 pages and 3 transactions per page;
state explosion prevents us from checking larger config-
urations. This work is published elsewhere [19].

5.1 Cyclic Commit vs. Traditional Commit

In order to find the real performance benefits of the com-
mit protocols, we must compare them only under trans-
actional writes, as all of them work similarly under non-
transactional writes. Therefore, in the following section,
we only use traces from the data journaling mode or from
the synthetic transaction generator.

Impact of Transaction Size. First, we compare cyclic
commit with traditional commit to see whether avoid-
ing one write per transaction improves the performance.
The relative benefits of saving one commit write must
be higher for smaller transactions. Figure 6 compares
the transaction throughput of BPCC and TC under dif-

Figure 6: Impact of Transaction Size. Transaction throughput vs.
transaction size. TC uses a 4 KB commit record.

Figure 7: Performance Improvement in Cyclic Commit. Trans-
action throughput in BPCC, normalized with respect to the throughput
in TC. The throughput of IOzone, Linux-build, Maildir, and TPC-B in
TC are 31.56, 37.96, 584.89, and 1075.27 transactions/s. The average
transaction size is reported on top of each bar.

ferent transaction sizes. The TxFlash simulator is driven
with the trace collected from a sequential writer, which
varies its sync interval to generate different transaction
sizes. Note that the performance numbers are the same
for both SCC and BPCC, as they differ only when there
are aborted transactions. For small transactions, all the
page writes can be simultaneously issued among multi-
ple flash packages and therefore, while BPCC takes time

to complete, TC takes because of the additional com-
mit write and write ordering, and this leads to a 100% im-
provement in transaction throughput. From the Figure,
we observe that the performance improvement is about
95% when the transaction is of the order of 100 KB, and
drops with larger transactions. Even larger transactions
benefit from BPCC, for example, throughput improves
by about 15% for transactions of size 1000 KB. For sin-
gle page transactions, both the protocols perform simi-
larly (not shown).
Performance Improvement and Space Overhead.
Next, we compare the commit protocols under macro
benchmarks. Figure 7 plots the transaction throughput in
TxFlash with BPCC and it is normalized with respect to
the throughput in TC under various macro benchmarks.
Since IOzone and Linux-build run asynchronously with
large transactions, BPCC does not offer any benefit (less
than 2% improvement in transaction throughput). On the
other hand, Maildir and TPC-B stress the storage system
with a large number of small transactions that cause high
commit overhead in TC; under these cases, BPCC of-
fers about 22% and 49% performance improvement for
Maildir and TPC-B respectively. SCC performs similarly

TU Dresden Transactional Flash

ABORTED TXNS

16

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 157

IOzone Linux-build Maildir TPC-B
Space overhead 0.23% 0.15% 7.29% 57.8%

Table 2: Space Overhead in Traditional Commit. Space overhead
(ratio of the number of commit to the number of valid pages) for differ-
ent macro benchmarks under TC.

Figure 8: Performance Under Aborts. Transaction time and re-
covery time of cyclic commit protocols under different percentages of
transaction aborts. Y-axis is normalized with respect to the correspond-
ing time in TC, which is around 1.43 ms and 2.4 s for the transaction
time and recovery time, respectively.

under all workloads.
Table 2 presents the space overhead due to the addi-

tional commit record in TC. The space overhead is mea-
sured as the ratio of the number of commit pages to the
valid pages in the system. The space overhead can in-
crease significantly if there are small transactions updat-
ing different pages in the system (e.g., Maildir and TPC-
B). For large transactions, this overhead is quite small as
evident from the IOzone and Linux-build entries.
Performance Under Aborts. Our next experiment com-
pares the commit protocols under transaction aborts. We
use the synthetic workload generator to create 20,000
transactions, each with an average size of 250 KB and
measure the normal and recovery performance under dif-
ferent degrees of transactions aborts. Figure 8 presents
the results, where for the normal performance we plot
the average transaction time, and for the recovery we plot
the time to read the stable storage and find the consistent
versions. During recovery, only the per-block summary
pages are scanned from the stable storage. The results
are normalized with respect to TC.

From Figure 8, we draw the following conclusions.
First, because SCC must erase an aborted page before
letting another transaction write to the same logical page,
its performance suffers as transaction aborts increase.
BPCC does not incur any such overhead. Second, SCC
has better recovery time than BPCC and TC because dur-
ing recovery it considers only the top 2 versions for every
page rather than paying the cost of analyzing all the page
versions. In the presence of aborts and failures, the re-
covery time of BPCC also includes the time to find the
appropriate straddle responsibility sets. This results in
a small overhead when compared to TC (less than 1%).
The recovery time can be improved through several tech-
niques. For example, TxFlash can periodically check-
point the remap table in the flash memory.

TxFlash
SSD +TC +SCC +BPCC

LOC 7621 9094 9219 9495

Table 3: Implementation Complexity. Lines of code in SSD and
TxFlash variants.

Figure 9: TxFlash Overhead. I/O response time of BPCC and TC,
normalized with respect to that of an SSD. The I/O response times of
IOzone, Linux-build, Maildir, and TPC-B in an SSD are (0.72, 0.71),
(0.70, 0.68), (0.59, 0.62), and (0.42, 0.39) ms in data and metadata
journaling modes.

Protocol Complexity. Although beneficial, cyclic com-
mit, specifically BPCC, is more complex than TC. In
Table 3, we list the lines of code (LOC) for the regu-
lar SSD and TxFlash with different commit protocols.
Treating the LOC as an estimator of complexity, TxFlash
adds about 25% additional code complexity to the SSD
firmware. Among the three commit protocols, TC is rel-
atively easier to implement than the other two; BPCC is
the most complex and most of its complexity is in the
recovery and garbage collection modules.

5.2 TxFlash vs. SSD
Our next step is to measure the overhead of TxFlash
when compared to a regular SSD under the same work-
loads. We use the traces collected from TxExt3 and run
them on the TxFlash and SSD simulators. When running
on the SSD simulator, we remove the WriteAtomic
calls from the trace. Note that an SSD does not provide
any transactional guarantees to the TxExt3 traces and we
just measure the read-write performances.
Performance Overhead. Figure 9 presents the average
I/O response time of TxFlash and SSD under various
workloads in both data and metadata journaling modes.
We configure TxFlash to run BPCC, but it performs sim-
ilarly under SCC. From the Figure, we can notice that
TxFlash with BPCC imposes a very small overhead (less
than 1%) when compared to a regular SSD, essentially
offering the transactional capability for free. This small
overhead is due to the additional WriteAtomic com-
mands for TxFlash. However, in TxFlash with TC, the
additional commit writes can cause a noticeable perfor-
mance overhead, especially if there are a large number of
small transactions; for example, in Maildir and TPC-B
under data journaling, TxFlash with TC incurs an addi-
tional overhead of 3% and 12%, respectively.

TU Dresden Transactional Flash

PERFORMANCE

17

158 8th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 10: End-to-End Performance. Benchmark run times on
TxExt3-with-TxFlash under the data and metadata journaling modes,
normalized with respect to their corresponding run times in Ext3-with-
SSD. IOzone, Linux-build, Maildir, and TPC-B take (94.16, 43.38),
(267.51, 264.40), (115.77, 146.79), and (82.73, 121.73) seconds in
data and metadata journaling modes on Ext3.

Memory Requirements. An SSD stores its remap ta-
ble, free-blocks list, block-specific, and package-specific
metadata in volatile memory (this is in addition to the
memory that may be used for read or write buffering).
For our configuration, an SSD requires about 4 MB per
4 GB flash package for its volatile structures. In addition,
TxFlash needs memory to keep track of the in-progress
and aborted transactions, to store the extra metadata per
page, and to maintain the straddlers (only in BPCC). This
requirement can vary depending on the maximum size
of a transaction, the number of concurrent transactions,
and the number of aborts. For a 4 GB flash package, to
support a maximum of 100 concurrent transactions, with
each having a maximum size of 4 MB, and an average
of 1 abort per 100 transactions, we need an additional
1 MB of memory per 4 GB flash package. That is, for
this configuration, TxFlash need 25% more memory than
a regular SSD to support transactions.

5.3 End-to-End Improvement
While we use the simulator to understand the device-
specific characteristics, we want to find out the end-to-
end file system performance when running on a TxFlash.
We run the pseudo-device driver on top of a 32 GB real
SSD and export the pseudo-device to TxExt3 and Ext3.
All our results are collected with the SSD cache disabled.
Our previous evaluation from 5.2 shows that TxFlash
(running either BPCC or SCC) adds little overhead when
compared to SSD, and even this small overhead is emu-
lated by the pseudo-device driver. For Ext3, the pseudo-
device driver just forwards the I/O requests to the SSD.

We run the benchmarks on TxExt3 and Ext3 mounted
on the pseudo-device under both data and metadata jour-
naling, and the results are presented in Figure 10, which
plots the run time of each benchmark normalized with
respect to the corresponding run time on Ext3. TxExt3
with TxFlash outperforms Ext3 for two reasons: first, on
each transaction, a commit write is saved and this can re-
sult in large savings for small transactions, even in meta-

data journaling (for example, in Maildir and TPC-B);
second, Ext3 performs checkpointing, where it rewrites
the information from the log into its fixed-location, and
for data journaling this overhead can be significant (for
example, in IOzone). Both the absence of commit write
and checkpointing combine to reduce the run time by as
much as around 65% (for TPC-B). However, Linux-build
is compute intensive and the improvements are less than
1% because the transactions are large and most of the
checkpointing happens in the background.

File system complexity can be reduced by using the
transactional primitives from the storage system. For ex-
ample, the journaling module of TxExt3 contains about
3300 LOC when compared to 7900 LOC in Ext3. Most
of the reduction were due to the absence of recovery and
revoke features and journal-specific abstraction.

5.4 Discussion and Summary
Another possible evaluation would be to compare a file
system implementing cyclic commit and running on a
regular SSD with TxExt3 running on TxFlash. This
would let us find out if there are performance benefits
in keeping the transactional features in the file system.

However, we face several limitations in building the
cyclic commit inside a file system. First, current SSDs
do not export the metadata portion of physical pages. As
a result, cyclic commit may not be implemented as effi-
ciently as described in this paper and therefore, the com-
parison would not be meaningful. Second, SSDs do not
expose their garbage collection policies and actions. But,
in BPCC, it is important to collect the obsolete pages in
certain order and unfortunately, this control is not avail-
able to the file systems. Finally, if cyclic commit is im-
plemented in a file system, it must use a variant of CoW
and as a result, multiple indirection maps will be present
in the system (one in the file system and the other in the
SSD) that may lead to performance and space overheads.

In summary, we derive the following conclusions.
First, in comparison with traditional commit, cyclic com-
mit has the potential to improve the transaction through-
put (by as much as 100%) and reduce the space overhead
for small transactions, while matching the traditional per-
formance for large transactions. Second, TxFlash with
cyclic commit can provide transactional features with
negligible overhead. Finally, a file system running on
TxFlash can eliminate the write ordering problem and
cut down the number of writes to half, resulting in large
improvements for I/O intensive workloads.

6 Related Work

Mime [5] provides transaction support on disk drives
using shadow copies. Mime offers the new function-

TU Dresden Transactional Flash

COSTS

18

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 157

IOzone Linux-build Maildir TPC-B
Space overhead 0.23% 0.15% 7.29% 57.8%

Table 2: Space Overhead in Traditional Commit. Space overhead
(ratio of the number of commit to the number of valid pages) for differ-
ent macro benchmarks under TC.

Figure 8: Performance Under Aborts. Transaction time and re-
covery time of cyclic commit protocols under different percentages of
transaction aborts. Y-axis is normalized with respect to the correspond-
ing time in TC, which is around 1.43 ms and 2.4 s for the transaction
time and recovery time, respectively.

under all workloads.
Table 2 presents the space overhead due to the addi-

tional commit record in TC. The space overhead is mea-
sured as the ratio of the number of commit pages to the
valid pages in the system. The space overhead can in-
crease significantly if there are small transactions updat-
ing different pages in the system (e.g., Maildir and TPC-
B). For large transactions, this overhead is quite small as
evident from the IOzone and Linux-build entries.
Performance Under Aborts. Our next experiment com-
pares the commit protocols under transaction aborts. We
use the synthetic workload generator to create 20,000
transactions, each with an average size of 250 KB and
measure the normal and recovery performance under dif-
ferent degrees of transactions aborts. Figure 8 presents
the results, where for the normal performance we plot
the average transaction time, and for the recovery we plot
the time to read the stable storage and find the consistent
versions. During recovery, only the per-block summary
pages are scanned from the stable storage. The results
are normalized with respect to TC.

From Figure 8, we draw the following conclusions.
First, because SCC must erase an aborted page before
letting another transaction write to the same logical page,
its performance suffers as transaction aborts increase.
BPCC does not incur any such overhead. Second, SCC
has better recovery time than BPCC and TC because dur-
ing recovery it considers only the top 2 versions for every
page rather than paying the cost of analyzing all the page
versions. In the presence of aborts and failures, the re-
covery time of BPCC also includes the time to find the
appropriate straddle responsibility sets. This results in
a small overhead when compared to TC (less than 1%).
The recovery time can be improved through several tech-
niques. For example, TxFlash can periodically check-
point the remap table in the flash memory.

TxFlash
SSD +TC +SCC +BPCC

LOC 7621 9094 9219 9495

Table 3: Implementation Complexity. Lines of code in SSD and
TxFlash variants.

Figure 9: TxFlash Overhead. I/O response time of BPCC and TC,
normalized with respect to that of an SSD. The I/O response times of
IOzone, Linux-build, Maildir, and TPC-B in an SSD are (0.72, 0.71),
(0.70, 0.68), (0.59, 0.62), and (0.42, 0.39) ms in data and metadata
journaling modes.

Protocol Complexity. Although beneficial, cyclic com-
mit, specifically BPCC, is more complex than TC. In
Table 3, we list the lines of code (LOC) for the regu-
lar SSD and TxFlash with different commit protocols.
Treating the LOC as an estimator of complexity, TxFlash
adds about 25% additional code complexity to the SSD
firmware. Among the three commit protocols, TC is rel-
atively easier to implement than the other two; BPCC is
the most complex and most of its complexity is in the
recovery and garbage collection modules.

5.2 TxFlash vs. SSD
Our next step is to measure the overhead of TxFlash
when compared to a regular SSD under the same work-
loads. We use the traces collected from TxExt3 and run
them on the TxFlash and SSD simulators. When running
on the SSD simulator, we remove the WriteAtomic
calls from the trace. Note that an SSD does not provide
any transactional guarantees to the TxExt3 traces and we
just measure the read-write performances.
Performance Overhead. Figure 9 presents the average
I/O response time of TxFlash and SSD under various
workloads in both data and metadata journaling modes.
We configure TxFlash to run BPCC, but it performs sim-
ilarly under SCC. From the Figure, we can notice that
TxFlash with BPCC imposes a very small overhead (less
than 1%) when compared to a regular SSD, essentially
offering the transactional capability for free. This small
overhead is due to the additional WriteAtomic com-
mands for TxFlash. However, in TxFlash with TC, the
additional commit writes can cause a noticeable perfor-
mance overhead, especially if there are a large number of
small transactions; for example, in Maildir and TPC-B
under data journaling, TxFlash with TC incurs an addi-
tional overhead of 3% and 12%, respectively.USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 157

IOzone Linux-build Maildir TPC-B
Space overhead 0.23% 0.15% 7.29% 57.8%

Table 2: Space Overhead in Traditional Commit. Space overhead
(ratio of the number of commit to the number of valid pages) for differ-
ent macro benchmarks under TC.

Figure 8: Performance Under Aborts. Transaction time and re-
covery time of cyclic commit protocols under different percentages of
transaction aborts. Y-axis is normalized with respect to the correspond-
ing time in TC, which is around 1.43 ms and 2.4 s for the transaction
time and recovery time, respectively.

under all workloads.
Table 2 presents the space overhead due to the addi-

tional commit record in TC. The space overhead is mea-
sured as the ratio of the number of commit pages to the
valid pages in the system. The space overhead can in-
crease significantly if there are small transactions updat-
ing different pages in the system (e.g., Maildir and TPC-
B). For large transactions, this overhead is quite small as
evident from the IOzone and Linux-build entries.
Performance Under Aborts. Our next experiment com-
pares the commit protocols under transaction aborts. We
use the synthetic workload generator to create 20,000
transactions, each with an average size of 250 KB and
measure the normal and recovery performance under dif-
ferent degrees of transactions aborts. Figure 8 presents
the results, where for the normal performance we plot
the average transaction time, and for the recovery we plot
the time to read the stable storage and find the consistent
versions. During recovery, only the per-block summary
pages are scanned from the stable storage. The results
are normalized with respect to TC.

From Figure 8, we draw the following conclusions.
First, because SCC must erase an aborted page before
letting another transaction write to the same logical page,
its performance suffers as transaction aborts increase.
BPCC does not incur any such overhead. Second, SCC
has better recovery time than BPCC and TC because dur-
ing recovery it considers only the top 2 versions for every
page rather than paying the cost of analyzing all the page
versions. In the presence of aborts and failures, the re-
covery time of BPCC also includes the time to find the
appropriate straddle responsibility sets. This results in
a small overhead when compared to TC (less than 1%).
The recovery time can be improved through several tech-
niques. For example, TxFlash can periodically check-
point the remap table in the flash memory.

TxFlash
SSD +TC +SCC +BPCC

LOC 7621 9094 9219 9495

Table 3: Implementation Complexity. Lines of code in SSD and
TxFlash variants.

Figure 9: TxFlash Overhead. I/O response time of BPCC and TC,
normalized with respect to that of an SSD. The I/O response times of
IOzone, Linux-build, Maildir, and TPC-B in an SSD are (0.72, 0.71),
(0.70, 0.68), (0.59, 0.62), and (0.42, 0.39) ms in data and metadata
journaling modes.

Protocol Complexity. Although beneficial, cyclic com-
mit, specifically BPCC, is more complex than TC. In
Table 3, we list the lines of code (LOC) for the regu-
lar SSD and TxFlash with different commit protocols.
Treating the LOC as an estimator of complexity, TxFlash
adds about 25% additional code complexity to the SSD
firmware. Among the three commit protocols, TC is rel-
atively easier to implement than the other two; BPCC is
the most complex and most of its complexity is in the
recovery and garbage collection modules.

5.2 TxFlash vs. SSD
Our next step is to measure the overhead of TxFlash
when compared to a regular SSD under the same work-
loads. We use the traces collected from TxExt3 and run
them on the TxFlash and SSD simulators. When running
on the SSD simulator, we remove the WriteAtomic
calls from the trace. Note that an SSD does not provide
any transactional guarantees to the TxExt3 traces and we
just measure the read-write performances.
Performance Overhead. Figure 9 presents the average
I/O response time of TxFlash and SSD under various
workloads in both data and metadata journaling modes.
We configure TxFlash to run BPCC, but it performs sim-
ilarly under SCC. From the Figure, we can notice that
TxFlash with BPCC imposes a very small overhead (less
than 1%) when compared to a regular SSD, essentially
offering the transactional capability for free. This small
overhead is due to the additional WriteAtomic com-
mands for TxFlash. However, in TxFlash with TC, the
additional commit writes can cause a noticeable perfor-
mance overhead, especially if there are a large number of
small transactions; for example, in Maildir and TPC-B
under data journaling, TxFlash with TC incurs an addi-
tional overhead of 3% and 12%, respectively.

TU Dresden Transactional Flash

DISCUSSION
■ Model-checked! Cool!

■ Is the cyclic commit protocol really new?

■ File systems do not cancel transactions.
Do we really need BPCC?

■ Databases cancel transactions, but
TxFlash is not fit for them yet. Will BPCC
still suffice?

■ Are page writes atomic?

19

TU Dresden Transactional Flash

BACKUP SLIDES

20

TU Dresden Transactional Flash

ABORTED TXNS

21

USENIX Association 8th USENIX Symposium on Operating Systems Design and Implementation 151

!" #"

$%&'

("

)
'
*+
,-
.
.
/
0
1
'
*

2"

3"

!" #" ("

(%+' 4%5 (%+' 415

$%&'

6*%.+%78,-. %1-*8

(-00,88'9)'*+,-.

:.7-00,88'9)'*+,-.

(-00,88'9 %.9 &%*1%&'
7-;;'78'9)'*+,-.

<'=8>;,.?

@,++,.&)'*+,-.

Figure 3: Ambiguous Scenario of Aborted and Committed Trans-
actions. Two cases with a broken link to : an aborted transaction
on the left, where was not written; a committed transaction on the
right, where was superseded and cleaned.

in are referenced by some record in the stable stor-
age but not present themselves. For an intention record
, we use to refer to the next-link in .

The following Cycle Property from cyclic commit is
fundamental to the recovery algorithms. It states that
the classification of an intention record can be inferred
from its next-link; this is because they belong to the same
transaction. It further states that, if a set of intention
records forms a cycle, then all of them are committed.

Cycle Property. For any intention record , is
committed if and only if is committed.

If there exists a set of intention records
, such that for each

, condition holds, then
any is committed.

It is worth noting that a break in a cycle (i.e.,
and) is not necessarily an indication that the
involved intention record is uncommitted. Figure 3 illus-
trates this case. In this example, pages are referred to by
the letters through and the version numbers are 1
and 2. Next links of intention records are shown by ar-
rows. In this Figure, various versions are labeled as to
whether they are committed (crosshatch fill) or uncom-
mitted (white fill). Missing versions are indicated by a
dotted border. We use “ ” for version of page . Con-
sider the scenario where has its next-link set to ,
but does not exist on the SSD. There are two cases
that could lead to the same ambiguous scenario: in the
first case, as shown in Figure 3(a), the transaction with

and was aborted and was never written; in
the second case, as shown in Figure 3(b), the transaction
with and commits, followed by another success-

ful transaction that creates and , making obso-
lete and causing to be garbage collected. In the first
case, belongs to an aborted transaction and should
be discarded, while in the second case belongs to a
committed transaction and should be preserved.

Observe that an intention record can be garbage
collected only when there is a higher version ()
that is committed. SCC is based on the following SCC
Invariant, which is ensured by correct initialization and
handling of uncommitted intention records.

SCC Invariant: If , any intention record
with is committed.

SCC Initialization. When TxFlash starts for the first
time, it initializes the metadata of each page by setting
the version number to 0 and the next-link to itself.
Handling Uncommitted Intention Records. If an in-
tention record belongs to an aborted transac-
tion, to preserve the SCC Invariant, before a newer ver-
sion of is written, and must be erased, where

. This avoids misclassification of (due
to the newer version of) and (by following the next
link). That is, any uncommitted intention on the stable
storage must be erased before any new writes are issued
to the same or a referenced page.
SCC Garbage Collection. With SCC Invariant, any
committed intention record can be garbage collected as
long as a newer version of the same logical page is
committed. Any uncommitted intention record can be
garbage collected at any time. Garbage collection in-
volves selecting a candidate block, copying the valid
pages out of it, and erasing the block to add to the free-
blocks list. TxFlash copies each valid version to another
location, preserving the same metadata. If the system
crashes after copying a version and before erasing the
block, multiple identical versions may be present for the
same page. This is a minor complication. TxFlash can
pick one copy as the principal copy and treat the others
as redundancies to be erased when convenient.
SCC Recovery. During recovery, SCC classifies the in-
tention records and identifies the highest committed ver-
sion for each logical page, as follows:

Since isolation is guaranteed, i.e., there are no over-
lapping write operations for the same page, for each log-
ical page, the recovery algorithm only has to choose be-
tween the intentions having the highest and the second
highest version numbers. This is true for the following
reason. The intentions having the second highest version
numbers must have been committed, since the applica-
tion must have completed their transactions before going
on to start a subsequent transaction on the same page.
The only question to answer is whether the highest ver-
sion numbered intention is also committed for a page.

