
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

OS Paper Reading Group
Summer Term 2009

Dresden, 2009-04-07

Administrative Stuff

• Website: www.tudos.org -> Teaching -> Reading
Group

• Mailing List:
http://os.inf.tu-dresden.de/mailman/listinfo/paper-reading-group

http://www.tudos.org/
http://os.inf.tu-dresden.de/mailman/listinfo/paper-reading-group

Earning credits

• Each student picks a paper
– Explore field of research by reading the paper

and all related work
– 75 min presentation on the research topic

presented by the paper
– 8 pages survey paper on the field of research,

summing up everything thoroughly

• Finally: pick an own research topic and write a
paper suitable for submission to a (minor)
workshop

• Btw.: These are the rules at Johns-Hopkins-
University. ;)

Our modus

• Modus
– 1 paper each week

• Related to systems research
• 10-15 min presentation

– Paper content
– Questions regarding the paper / the general topic

• Discussion

– Choice of paper
• Staff members propose 3 alternatives, voting on the

mailing list.
• Students pick a paper from the list on the web site
• Decision made on Friday before the next meeting

• Pizza anyone?

Earning credits (2 SWS)

• Send a paper summary to doebel@tudos.org until the
day before the presentation (23:59:59)
– Explain what you understood from the paper.
– Ask questions about things you did not understand.
– Mention things you like/dislike about the paper.
– ...

• Present one paper yourself during the term.
– English (this is not a test of your language skills!)
– Show that you understood the paper.
– Prepare questions for discussion.
– Extended knowledge (e.g., related work) can be a

plus.

mailto:doebel@tudos.org

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Larrabee: A many-core x86
architecture for visual computing
(loads of authors from Intel, RAD, and Stanford)

Dresden, 2009-04-07

presented by Bjoern Doebel

3D Graphics are Complex...

3D world
model

Graphics
Pipeline

2D
image

OpenGL
DirectX

3D Graphics are Complex...

3D world
model Modeling transform

2D
image

Per-vertex lighting

View transformation

Projection transform.

Clipping, Culling, ...

Rasterization

Texturing, Shading

Vertex shader

Pixel shader

3D Graphics are Highly Parallelizable

• Operations work on
– Single vertices
– Groups of vertices
– Tiles / Bins of the image

• Suitable for SIMD architectures
– Multiple GPUs per graphics card
– Local GPU caches, vector processing

• Swap point of view: use GPU for arbitrary
computations – stream processing
– CUDA (nVIDIA), FireStream (AMD/ATI)

State of the art CPUs

• General-purpose CPUs
– Power consumption scales quadratic with CPU speed

– Out-of-order execution – gains in speed and power
consumption

– Multiple hardware threads and CPU cores
• Enable efficient power management
• Better suitable if highly parallel algorithms can be

found for a certain problem IBM Cell→
• Cache consistency issues

CPUs and GPUs converge

Larrabee architecture

Larrabee Cores

• First release planned with 32 cores
• 4-way multithreaded
• 32kB L1 data & instruction cache
• 256 kB L2 cache subset

• 16 x 32 = 512 bit VPU
– Load-op instructions
– Vector arithmetics
– Scatter/Gather, Unpack operations
– Vector masks

Larrabee Features

• Explicit cache management
– Explicit load operation into L1/L2 caches
– Example: evict streaming data after use, keep

other cache lines avoid thrashing→

• No OOO execution
– Avoid power-intensive hardware
– Use highly predictable 2-pipelined Pentium

cores instead
• Compiler optimizations instead of runtime

speculation

Features (2)

• Interconnect
– Ring with up to 16 cores
– 2-way 512 bit bus
– Cache coherency protocol
– Multiple memory controllers and fixed function units

within the ring to avoid congestion

• Fixed Function Logic
– Software wherever possible
– Texture filtering the main point where hardware is needed

(up to 40x speed-down otherwise)

• Larrabee software renderer
– Tile-based to decrease memory demand
– Dependencies between render targets
– Cores can switch between front-end and back-end mode
– 70% of instructions make use of VPU

Evaluation

• Scalability promising
– 7-10% below optimal scalability for 48 cores

• Memory demand of SW renderer much lower than
for immediate (non-tiled) rendering

• Study: can an application balance its load?
– Too much variance
– → Need dynamic load balancing.

Larrabee Programming Model

• Larrabee Native C/C++ compiler
– Static optimization
– Most existing x86 code compiles w/o modifications

• Pthreads implementation + hardware threading
support (Intel Thread Building Blocks)

• Larrabee driver in host
– Redirect everything L. can't do (e.g., file I/O)
– Transfer between host and Larrabee nodes

• Claim: SIMD & explicit control good for everything
that involves irregular data structures
– Pointer trees, spatial data structures

Discussion

• “The 'large' Larrabee in 2010 will have roughly the
same performance as a 2006 GPU from Nvidia or ATI.”
(Peter Glaskowsky, Technology Analyst)
– Hint: said at an nVIDIA conference...

• Is Larrabee really different from CUDA/FireStream?
– Even though Larrabee is x86, we need a dedicated

compiler/assembly language for using VPU.

• Is this going to open up a whole new world of bugs
and errors?

Discussion (2)

• What is the systems perspective in HPC at all
– Cryptanalysis (already done)
– Larrabee as a cheap scalar manycore?

• Garbage collection
• Intrusion Detection & other security-related stuff
• General: offloading work from CPU

– Can systems software make use of the VPU?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Hier steht der Titel der Power Point Präsentation.
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

