
GARBAGE COLLECTION
IN AN UNCOOPERATIVE 

ENVIRONMENT
Hans-Jürgen Böhm, Mark Weiser



STATE OF THE ART

• conventional storage management

• conservative: all garbage should eventually be reclaimed

• reference counting

• requires program cooperation for every pointer assignment

• garbage collector determines accessibility

• locate references, distinguish them from data



APPROACHES

• each data item contains information to identify pointers

• shadow values, fat data items, slow

• partition memory and registers

• does not work directly with the stack

• tailor-made traversal routine

• does not work with polymorphic functions



LIMITATION

• we get: reclaim objects not accessible at runtime

• we want: reclaim objects not accessible by the program

• compiler may fail to clear references

• activation records (stack frames) may keep unaccessible 
objects alive



let

f = let

a = …

b = …

in

if … a … b … then (λy.y) 
else (λy.y+1)

in

A: …



int main(void) {

int f(int y) {

int a = …

int b = …

if (a … b) then return y 
else return y+1;

}

A: …

}



f :

Global
Activation

Record

Code for λy . ...

env:

slink:

a:

b:

Value associated with a

Value associated with b

Activation
Record

for
let ...

Figure 2: Environment representation for Figure 1

The allocator itself is structured as follows. A standard allocation scheme is used to obtain large

‘‘chunks’’ of memory. Such chunks are always a multiple of 4K in size, and always start on 4 Kbyte

boundaries. Additional chunks are automatically obtained from the operating system if none are available,

or if a garbage collection failed to reclaim a sufficient amount of free space.

The allocator does not assume that memory obtained from the operating system is contiguous. It can

coexist with other allocators, so long as the garbage collector does not need to consider references from

objects managed by a foreign allocator.

Smaller objects are allocated by maintaining separate free lists for each object size. In the normal

case, an allocation of a small object thus consists simply of removing the first element of the appropriate

free list. This typically involves the execution of four or five machine instructions, including the test for an

empty free list. Whenever an empty free list is encountered, a 4K chunk is obtained from the lower level

allocator and subdivided uniformly into pieces of the appropriate size. We do not insist that objects in the

same region of memory have uniform structure with respect to nested pointers, but we do insure that all

objects in a given chunk have identical size.

Small object allocation is somewhat slower than simply advancing a pointer, as is normally done with

compacting collectors[4]. However, it does make it possible to explicitly deallocate storage to avoid

garbage collection overhead. The Russell run-time system makes occasional use of this to free objects

known to be inaccessible. Similarly, the compiler can usefully insert explicit deallocation calls when static

analysis determines that an object is no longer accessible.

-7-



Accept the fact that any garbage collector may 
fail to reclaim memory that can never be 

accessed.

REALITY-CHECK



DESIGN GOALS

• execution on native hardware

• pay for garbage collection only when needed

• stay compatible with underlying OS and libraries

• no extra memory for tagging

• do not complicate compilers

• support C



APPROACH

• mark-sweep collector

• first pass: traverse and mark all accessible data

• second pass: reclaim unmarked objects

• accessible data is never moved



PROBLEMS

• no tags: any data item is potentially a pointer

• Which data items are valid pointers?

• must never set mark-bit on anything but valid objects

• misdetection of integers as pointers possible

• no impact on correctness

• should be minimized



The sweep phase of the allocator is written so as to notice if a chunk is completely empty. If so, the

entire chunk is returned to the chunk allocator, instead of returning the individual objects to the appropriate

free list. Adjacent free chunks are coalesced.

Located at the beginning of a chunk C is a header containing the following information:

• The size of objects in the chunk. For large objects, the size is that of the single object contained in

the chunk.

• A pointer to the entry for C in a contiguous list of all allocated chunks. The entry in the list is simply

a pointer back to C.

• An area reserved for mark bits corresponding to the objects in the chunk.

Figure 3 depicts the data structure associated with the chunk C.

List of
allocated
chunks

chunk
addresses

more
chunk

addresses

empty

last valid chunk

entry for C:

Chunk C

size

mark bits

data
objects

Figure 3: Recognizing valid chunks

-8-



We assume that for every accessible object 
there is an accessible pointer to the beginning of 

the object.

ASSUMPTION



OPTIMIZATION

• lay out memory so small integers are never valid heap pointers

• automatically on UNIX

• separate object types onto different heaps

• atomic: contains no references (i.e. strings)

• composite: may contain embedded references

• no need to traverse and clear atomics



EVALUATION

• works

• collection times sufficiently short

• reclamation leaks sufficiently small

• free tool for debugging memory leaks



EVALUATION

• unmodified C programs can use garbage collection

• used for two code generators for the Russell compiler

• to fix a storage allocation bug

• to improve performance



DISCUSSION

• one down, two to go?

• parallelism, robustness

• orthogonality

• language, framework, 
runtime, memory 
management


