GARBAGE COLLECTION
IN AN UNCOOPERATIVE
ENVIRONMEN T

Hans-Jurgen Bohm, Mark Welser




SIATE OF THE ART

» conventional storage management

- conservative: all garbage should eventually be reclaimed

* reference counting

* requires program cooperation for every pointer assisnment
» garbage collector determines accessibility

* locate references, distinguish them from data



APPROACHES

* each data ritem contains information to identify pointers
» shadow values, fat data ritems, slow

* partition memory and registers
» does not work directly with the stack

» tallor-made traversal routine

» does not work with polymorphic functions



LIMITATION

* we get: reclaim objects not accessible at runtime
* we want: reclaim objects not accessible by the program
» compller may fail to clear references

» activation records (stack frames) may keep unaccessible
objects alive



let

f = let
q =
b =
i

if .. a .. b .. then (Ay.y)
else (Ay.y+1)

in



aiEma1n (volid) {
atEs e (ant y) {
EREaE =

iBnET D = .

gt (a .. b) then retuEnEE:
else return y+1;



Global
Activation
Record

» Code for Ay . ...

s

cnv.

g

i,

Activation| slink:
Record
for a.
let ...

» Value associated with a

» Value associated with b



REALIT Y-CHECK

Accept the fact that any garbage collector may

fall to reclaim memory that can never be
accessed.




DESIGN GOALS

» execution on native hardware

* pay for garbage collection only when needed

» stay compatible with underlying OS and libraries
* NO extra memory for tagging

* do not complicate compillers

g pport C



APPROACH

* mark-sweep collector
* first pass: traverse and mark all accessible data
» second pass: reclaim unmarked objects

* accessible data Is never moved



PROBLEMS

* NO tags: any data item Is potentially a pointer

* Which data items are valid pointers!

* must never set mark-bit on anything but valid objects
* misdetection of integers as pointers possible

* NO IMmpact on correctness

* should be minimized



entry for C:

List of
allocated
chunks

chunk
addresses

more
chunk
addresses

«— last valid chunk

empty

Chunk C

S1ze

mark bits

data
objects




ASSUMPTION

VWe assume that for every accessible object

there Is an accessible pointer to the beginning of
the object.




OPTIMIZATION

* lay out memory so small integers are never valid heap pointers
- automatically on UNIX

* separate object types onto different heaps
- atomic: contains no references (l.e. strings)
- composite: may contain embedded references

* NO Need to traverse and clear atomics



EVALUATION

* Works
- collection times sufficiently short
* reclamation leaks sufficiently small

* free tool for debugging memory leaks



EVALUATION

» unmodified C programs can use garbage collection
» used for two code generators for the Russell compiler
» to Tix a storage allocation bug

» to Improve performance



DISCUSSION

* one down, two to go!
» parallelism, robustness
» orthogonalrty

* language, framework,
runtime, memory
mManagement




