
Department of Computer Science Institute for System Architecture, Operating Systems Group

CARSTEN WEINHOLD

PAGE TABLE STRUCTURES FOR
FINE-GRAIN VIRTUAL MEMORY
JOCHEN LIEDTKE

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

MOTIVATION

2

■ Context: object oriented systems

■ Objects are pieces of memory

■ Access control, based on:

■ Segments

■ Pages

■ Goal: purely page-based architecture that
efficiently supports fine granularity

Not really there, huge tables

Hierarchies, sharing, coarse-grained

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

REQUIREMENTS

■ Fine-grained address spaces need:

■ Small pages (e.g., 16 byte)

■ Various page sizes (powers of 2)

■ Different page sizes can be mixed freely

■ Efficient operations on hierarchy of small
and large regions

3

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

MULTI-LEVEL PTS

■ Conventional page tables:

■ Multi-level

■ Few fixed page sizes (4K, 2M, 4M, ...)

■ Large tables per level (512, 1024 entries)

■ Coarse-grained

■ Wasted storage for sparse address spaces

■ „Small“ address spaces are expensive

4

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

INVERTED PTS
■ Inverted page tables:

■ One entry per page

■ Sparse address spaces are efficient

■ Hashed page tables:

■ IPT entries with physical address ⇒ aliasing

■ Problems:

■ No hierarchy, changing attributes expensive

■ Fixed page sizes, high load on TLB
5

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

GUARDED PTS
■ Sparse address space:

■ Only one valid entry in 2nd
and 3rd PT level

■ PTs effectively not needed,
wasting memory

■ Idea:

■ Remove unneeded PTs

■ Add extra info to PT entries
to indicate shortcut

6

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

GUARD

■ PT entries augmentated:

■ Bit string g: „guard“

■ Size of next PT / data page

■ Length of g, size of next level can vary

■ Translation works like for conventional PTs

■ Conventional PTs are special case: g=∅

7

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

TRANSLATION

8

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

SMALL TREES

9

■ Less than 2 GPT entries needed per page

■ Regardless of address-space / page sizes

1 + ½(1 + ½(1 + ...)) = 1 + ½ + ¼ + ... < 2

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

TREE DEPTH
■ Translation steps

determine performance

■ n address bits can be
translated in⎡n/2⎤steps

■ All nodes that decode
only one bit can be
transformed

■ Transformed tree remains
small

10

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

TREE DEPTH
■ Translation in n/2 steps still takes long

■ k-associative translation:

■ Perform k translations in parallel

■ Allows for larger nodes

11

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

OPTIMIZATIONS

12

Side Entry-Point Caching

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

USER MAPPINGS
■ Paper proposes user-level mapping

■ PT entries augmented with type t:

■ t = alias

■ Address in PT entry is virtual

■ Aliasing of virtual memory

■ t = call-on-reference

■ Address in PT entry is function pointer

■ Executes user-defined code on access

13

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

ALIASING

14

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

MAP INSTRUCTION

15

■ Unprivileged map instruction:

■ Allows app to modify its own PT entries

■ No kernel entry / exit needed

■ Only works if PT entry type t matches

■ Virtual addresses only, no isolation breach

TU Dresden Page Table Structures For Fine-Grain Virtual Memory

FINAL SLIDE

16

■ GPTs allow for a wide range of page sizes

■ Very efficient for sparse address spaces

■ Discussion points:

■ What about PT allocation?

■ Different page sizes vs. complexity?

■ Usecases?

■ Practical performance? MIPS prototype?

