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KNOBS

• CPU frequency

• CPU voltage

• CPU sleep states

• memory and bus frequency

• power states of IO devices (not considered here)
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Figure 1. Normalised energy use of two benchmarks under

DVFS on a Latitude laptop

for run-time phase detection and prediction [Isci 2006]. We

see this work on workload prediction as being highly com-

plementary to our approach, since we presently employ a

very simple workload predictor. In the same manner, ma-

chine learning techniques [Kephart 2007] could be used to

improve the system’s predictive ability, as well as tune power

and performance estimators using on-line feedback.

[Mahesri 2004] found that a laptop CPU uses between

10 and 50% of the system’s power depending on work-

load. While the CPU is a significant contributor to overall

power consumption, it does not necessarily dominate. Con-

sequently, there has been work on developing complete sys-

tem power models based on run-time statistics [Heath 2005,

Economou 2006, Bircher 2007].

ECOsystem [Zeng 2005] was an attempt to build an

explicitly energy-aware operating system, introducing a

system-wide abstraction for the energy used. The purpose

was to budget the energy available to individual processes.

The models concentrated on I/O power and are therefore

complementary to the work presented here. Virtualisation

adds yet another dimension to energy and resource account-

ing [Stoess 2007].

Recently, the case has been made for improved hard-

ware support for power management. [Barroso 2007] ar-

gued for lower-power idle modes, based on the observation

that servers were nearly always less than 50% utilised. In

addition, they pointed out the need for more active-power

management mechanisms for devices such as memory, net-

work cards and disks. NVIDIA have recently introduced

such mechanisms [NVIDIA Corporation 2007]. Such active

management features would result in systems with many

interacting settings. We consider our energy-modelling ap-

proach as core to the effective management of such a system.

[Peddersen 2007] investigated a methodology for detecting

which events within a CPU should be used to estimate power

consumption, which provides the basis for a hardware man-
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Figure 2. Performance of a memory-bound application

(gzip) under frequency scaling on a PXA270-based plat-
form. Lines connect settings with the same memory but dif-

ferent core frequencies.

ufacturer to provide more suitable PMCs for energy estima-

tion.

3. Power Management Challenges

Our investigation of a wide range of platforms and work-

loads demonstrated the shortcomings of commonly-used

energy-management heuristics – they frequently fail to

achieve their goals. Here we present our main observations,

which were obtained with the the methodology described in

Section 5.

3.1 Workload dependence of DVFS response

Energy-management approaches are frequently based on

simplifying assumptions which neglect the fact that the re-

sponse to frequency scaling is highly dependent on workload

characteristics. This can lead to very poor results, as shown

in Figure 1.

Here we compare the responses of the CPU-bound gzip
and the memory-bound swim benchmark on a Dell Latitude
D600 laptop. As discussed in the literature, the execution

time of the CPU-bound program is proportional to the clock

period (inverse frequency), while for the memory-bound

program it is almost independent of CPU frequency. This

results in the energy consumption shown in the figure: Total

energy use for the CPU-bound benchmark is minimised by

running at the highest frequency (race-to-halt works well)

because this minimises the clock-independent memory en-

ergy and leakage losses in the CPU [Snowdon 2005]. In con-

trast, the memory-bound process minimises energy use at a

low (but not the lowest!) frequency. Clearly, an approach that

does not take workload characteristics into account will not

be able to deliver a reasonable result for both programs.
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Figure 3. Cycles vs. Frequency for various benchmarks on

a Latitude D600 laptop

3.2 Multiple adjustable frequencies

Some platforms we have previously evaluated, such as those

based on Intel PXA processors, allow multiple frequencies

to be modified, typically CPU, bus(es) and memory. Dif-

ferent combinations of frequencies (which we call settings)

lead to different results, as shown in Figure 2. This shows

the execution time of gzip (which is memory-bound on this
platform – the opposite of the D600!) on a PXA270-based

machine for different frequency settings, showing the im-

pact of memory frequency. CPU-bound applications are un-

affected by memory frequency.

3.3 Variable memory system performance

The performance of the memory subsystem at a particular

memory frequency may appear to depend on the core fre-

quency [Kotla 2004]. This is a result of micro-architectural

features, designed to improve performance, such as out-of-

order execution or pre-fetching. These can hide some of the

latency of cache misses (by overlapping them with instruc-

tion execution) but become less effective as the ratio of core

to memory frequency increases. An example is shown in

Figure 3. The behaviour of both the CPU-bound (gzip) and
memory-bound (swim) benchmarks are well represented by
straight lines (with swim extending above the upper bound of
the graph), while intermediate workloads (especially mgrid)
show significant non-linearity. This effect contributes to the

error in our models, since the performance counters required

to estimate these effects accurately are not available.

The memory configuration also has an effect on energy

consumption as shown in Figure 4. The energy use for swim
is quite different with and without dual-channel memory en-

abled in the system, which happens when adding a second

memory DIMM. The figure also shows the effect of chang-

ing the memory frequency on the energy consumption— the

irregular behaviour at 800MHz is due to a reduced memory

frequency for that setting.
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Figure 4. Comparison of cycles and energy use on an

AMD64 Server with and without dual channel memory for

swim.
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Figure 5. Total energy for the CPU-bound gzip and

memory-bound swim application on the Latitude, using dif-
ferent idle states.

3.4 Idle modes

Reducing the frequency (and thus performance) reduces idle

time, unless there is no idle time (as in heavily loaded

servers). Modern CPUs have low-power modes which the

OS can invoke when the system is idle. Idle modes still con-

sume power in most cases, and take time to enter and exit

(the deeper, i.e. lower-power, the idle mode is, the more time

it takes to enter and exit). As discussed by Miyoshi [Miyoshi

2002], the power consumed while idle must be taken into ac-

count if overall energy saving is the goal.

Figure 5 shows total energy consumption when account-

ing for the idle energy used in various low-power modes

during the faster runs (for a total time equal to the slowest

run time). Besides the actual low-power modes supported

(“C states”), we also show hypothetical 5W and 0W states

(active power is 22–30W). We see again a significant dif-

ference between memory-intensive and CPU-intensive pro-



OVERHEAD

• switching frequency and power incurs CPU downtime

• Pentium-M

• frequency change: 10µs

• voltage change asynchronous

• Opteron

• frequency and voltage change: 2ms (140µs out of spec)
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Figure 6. Actual vs. predicted input power for the Dell

Latitude D600 laptop running from the AC adapter.

cesses, although for the hardware-supported idle modes, run-

ning at the lowest frequency always results in the lowest total

energy on this platform. As the hypothetical states demon-

strate, this will change once the hardware offers idle states

of really low power consumption, as embedded processors

do. Note that even with a zero-power idle mode, race-to-halt

is sub-optimal for all but the most CPU-bound applications.

3.5 Power-supply nonlinearities

Systems often use voltage regulators to convert from one

voltage to another. These regulators often have a high effi-

ciency, but that efficiency may depend on the operating con-

ditions. During our experiments on the Latitude we ran into

the perplexing situation where reducing the CPU frequency

would increase the power drawn by the system. This was

caused by a change in efficiency of the laptop’s CPU power

supply as the load changed, as shown in Figure 6. Such an

effect provides a challenge to power management schemes

based on simple analytical power models or heuristics. We

worked around this issue by running the Latitude from its

battery instead of the AC power adapter, however we ex-

pect other systems’ energy efficiency to be affected by their

power consumption. Martin’s work regarding the efficiency

of batteries [Martin 2001] clearly falls into a similar cate-

gory. Our approach naturally deals with these effects, given

an appropriate model for the power supply efficiency.

3.6 Temperature effects

The temperature of the processor core affects the power con-

sumption in two ways: leakage current is proportional to the

temperature of the silicon, and the power required for active

cooling (fan) is significant. The result is that higher frequen-

cies (which cause the system to run at a higher temperature)

use disproportionately more energy, and that the relative en-

ergy benefits of the frequency setpoints change when the

CPU is at an elevated temperature. This effect is shown in

Figure 7.
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Figure 7. System power vs. temperature for gzip at

600MHz on a Dell Latitude D600

3.7 Frequency switching overheads

The time during which the CPU is unavailable during fre-

quency switches varies considerably between platforms. Of

the ones we tested it ranged from 10µs (Pentium-M based

Latitude, not including the voltage change which happens

asynchronously) through 140µs worst-case for the Opteron.
This is pure overhead, since the machine consumes en-

ergy without doing any useful processing. Some other plat-

forms examined exhibited interesting features: the PXAs

take 500µs for a full frequency switch, compared with 20

cycles for a so-called “turbo mode” switch.

The overhead is due to two operations — the voltage

and the frequency change. The overhead involved in these

operations is highly hardware-specific.

The platforms provide different levels of automation. On

the Opteron, software controls the voltage ramps, and so the

CPU is unavailable for the duration of the voltage switch.

The Pentium-M is fully hardware-sequenced, and therefore

the only CPU downtime is during the frequency change.

On the Opteron the voltage must be scaled to the max-

imum before the frequency switch can be performed, and

subsequently to the target voltage. The period of CPU un-

availability is then dependent on both the previous and

next frequencies. For experimental purposes, the Opteron’s

DVFS driver was tuned to run faster than the specification,

allowing the above worst-case performance of 140µs. The
worst case when run within the specification was∼2ms.

3.8 Real-time dependencies

Some events in the system occur at a rate that is not related

to the system’s clock frequencies. Scheduler clock ticks are

one such type of event, and, in a system with dynamic ticks,

do not occur while in idle modes. Therefore, running at

a higher performance setting reduces both the number of

scheduler invocations incurred, and the proportion of the

system’s active time spent processing those invocations. The

number of clock ticks themselves contribute to the overall

running time.
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cesses, although for the hardware-supported idle modes, run-

ning at the lowest frequency always results in the lowest total

energy on this platform. As the hypothetical states demon-

strate, this will change once the hardware offers idle states

of really low power consumption, as embedded processors

do. Note that even with a zero-power idle mode, race-to-halt

is sub-optimal for all but the most CPU-bound applications.

3.5 Power-supply nonlinearities

Systems often use voltage regulators to convert from one

voltage to another. These regulators often have a high effi-

ciency, but that efficiency may depend on the operating con-

ditions. During our experiments on the Latitude we ran into

the perplexing situation where reducing the CPU frequency

would increase the power drawn by the system. This was

caused by a change in efficiency of the laptop’s CPU power

supply as the load changed, as shown in Figure 6. Such an

effect provides a challenge to power management schemes

based on simple analytical power models or heuristics. We

worked around this issue by running the Latitude from its

battery instead of the AC power adapter, however we ex-

pect other systems’ energy efficiency to be affected by their

power consumption. Martin’s work regarding the efficiency

of batteries [Martin 2001] clearly falls into a similar cate-

gory. Our approach naturally deals with these effects, given

an appropriate model for the power supply efficiency.

3.6 Temperature effects

The temperature of the processor core affects the power con-

sumption in two ways: leakage current is proportional to the

temperature of the silicon, and the power required for active

cooling (fan) is significant. The result is that higher frequen-

cies (which cause the system to run at a higher temperature)

use disproportionately more energy, and that the relative en-

ergy benefits of the frequency setpoints change when the

CPU is at an elevated temperature. This effect is shown in

Figure 7.
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The time during which the CPU is unavailable during fre-

quency switches varies considerably between platforms. Of

the ones we tested it ranged from 10µs (Pentium-M based

Latitude, not including the voltage change which happens

asynchronously) through 140µs worst-case for the Opteron.
This is pure overhead, since the machine consumes en-

ergy without doing any useful processing. Some other plat-

forms examined exhibited interesting features: the PXAs

take 500µs for a full frequency switch, compared with 20

cycles for a so-called “turbo mode” switch.

The overhead is due to two operations — the voltage

and the frequency change. The overhead involved in these
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The platforms provide different levels of automation. On

the Opteron, software controls the voltage ramps, and so the

CPU is unavailable for the duration of the voltage switch.

The Pentium-M is fully hardware-sequenced, and therefore

the only CPU downtime is during the frequency change.

On the Opteron the voltage must be scaled to the max-

imum before the frequency switch can be performed, and

subsequently to the target voltage. The period of CPU un-

availability is then dependent on both the previous and

next frequencies. For experimental purposes, the Opteron’s

DVFS driver was tuned to run faster than the specification,

allowing the above worst-case performance of 140µs. The
worst case when run within the specification was∼2ms.

3.8 Real-time dependencies

Some events in the system occur at a rate that is not related

to the system’s clock frequencies. Scheduler clock ticks are

one such type of event, and, in a system with dynamic ticks,

do not occur while in idle modes. Therefore, running at

a higher performance setting reduces both the number of

scheduler invocations incurred, and the proportion of the

system’s active time spent processing those invocations. The

number of clock ticks themselves contribute to the overall

running time.



TIME MODEL

clock frequency respectively for internal bus and memory bus have
been connected by lines.

The CPU bound benchmark has a nearly constant number of cy-
cles to execute and thus behaves ideally as with the simple mod-
els (i.e. the performance is proportional to the CPU clock period).
However, the memory bound benchmark shows that not only does
the number of cycles grow at higher CPU frequencies (i.e. a sub-
linear speed up), there is a dependency on the internal and memory
bus frequencies, which leads to close to a factor of two variation in
the number of cycles.

Alternately, we could consider that, when we reduce the CPU
frequency, the performance impact is less than what would be ex-
pected if we didn’t consider the memory effects. This leads to bet-
ter energy saving opportunities as discussed by Seth et al [18].

The power used by the system is also dependent on more than
the processor performing computations. This is modelled in recent
literature via a static component to the power model. The static
power consumption (Pstatic) of embedded systems has moved now
into the same order of magnitude as the dynamic power consump-
tion (Pdyn ) by the processor and in cases even surpasses it.

Ultimately we are interested in the amount of energy consumed
by an application, which is dependent on the static and dynamic
power consumption as well as the execution time (T ). This is de-
picted here as

E = PstaticT +

Z T

0

Pdyndt (2)

In general terms Pdyn rises with higher clock frequencies, how-
ever, in terms of energy this is partially compensated for by a
shorter execution time. The static power is constant and thus the
static energy consumed is a linear function of the execution time.
The energy function in Equation 2 is highly sensitive to the exe-
cution time as well as the balance of dynamic and static power in
the system. The latter includes the static power drawn by memory
and I/O devices, and as such the details of this balance are highly
platform-specific.

To further illustrate the dependence of the behaviour of total
energy on workload characteristics, we ran two synthetic bench-
marks: CPUBOUND performs no memory accesses after a short
warmup phase, while readbound executes almost exclusively LOAD
instructions. Figure 2 shows total energy as a function of appli-
cation performance, normalised to the highest frequency. Here,
performance at frequency f is expressed as the ratio of execution
times at fmax and f . It therefore represents the true trade off be-
tween execution time and energy. We again varied bus and memory
frequencies and lines connect the data points where those are equal.

It is obvious from the graphs that the energy use of the CPU-
bound process is completely controlled by the CPU frequency (al-
though not at all in the way expected by the naive model of Equa-
tion 1) while this frequency has a minimal effect on the memory-
bound benchmark.

These figures lead us to agree with the previous work suggesting
that conventional DVFS theory has little to do with reality and in
fact breaks down catastrophically in the sense that it can predict the
opposite of what truly happens. It is clear from the above that much
more sophisticated execution time and energy models are required.

4. TIME MODEL
Our previous work [22] developed an accurate model for execu-

tion time under DVFS, which we summarise here for completeness.
The execution time, T , for a given piece of software can be rep-

resented as a sum of the time spent waiting for each component in
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Figure 2: Normalised Energy vs. Performance for cpubound
and readbound on PLEB 2. Lines join points of equal bus and
memory frequency.

the system. This time is, in turn, proportional to the inverse of the
clock frequency for that component:

T =
Ccpu

fcpu
+

Cbus

fbus
+

Cmem

fmem
+

Cio

fio
+ . . . (3)

The coefficients Cx are workload-specific, and can be thought
of as the number cycles (of the component’s clock, fx) the rest of
the system is waiting for component x. In this paper we do not
consider I/O operations’ effect on performance, and power drawn
by I/O peripherals is lumped into static power. An effective model
for the power consumed by I/O devices is the focus of work yet to
be published.

Performance counters can be used to estimate Cbus and
Cmem . This is because the performance counters available
in most modern CPUs count events which relate to the mem-
ory performance (such as stall cycles and cache misses). For
an arbitrary set of performance counters, we represent the bus
and memory coefficients as a linear combination of their read-
ings,

Cbus = α1PMC 1 + α2PMC 2 + . . .

Cmem = β1PMC 1 + β2PMC 2 + . . . (4)

where the constants αi and βi depend on the platform’s charac-
teristics, but not on the workload. Hence it is possible to char-
acterise the platform once and then use the results for all work-
loads. With a separate measurement of execution time (typically

87
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the system is waiting for component x. In this paper we do not
consider I/O operations’ effect on performance, and power drawn
by I/O peripherals is lumped into static power. An effective model
for the power consumed by I/O devices is the focus of work yet to
be published.

Performance counters can be used to estimate Cbus and
Cmem . This is because the performance counters available
in most modern CPUs count events which relate to the mem-
ory performance (such as stall cycles and cache misses). For
an arbitrary set of performance counters, we represent the bus
and memory coefficients as a linear combination of their read-
ings,

Cbus = α1PMC 1 + α2PMC 2 + . . .

Cmem = β1PMC 1 + β2PMC 2 + . . . (4)

where the constants αi and βi depend on the platform’s charac-
teristics, but not on the workload. Hence it is possible to char-
acterise the platform once and then use the results for all work-
loads. With a separate measurement of execution time (typically
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using the processor’s cycle counter), Equation 3 can be rewritten
as

Ccpu = Ctot −
fcpu

fbus
Cbus −

fcpu

fmem
Cmem (5)

leading to the ability to calculate all of the constants in Equa-
tion 3.

This model describes the frequency-dependence of the execution
time of software. We can use this to predict the execution time
at arbitrary frequency settings f ′

x from observations at frequency
settings fx:

C′
tot = Ctot−

fcpu

fbus
Cbus−

fcpu

fmem
Cmem +

f ′
cpu

f ′
bus

Cbus +
f ′
cpu

f ′
mem

Cmem

(6)
The relative performance s under frequency scaling from f to f ′

is

s =
fcpu

f ′
cpu

× C′
tot

Ctot
(7)

where C′
tot is obtained from Equation 6.

We characterised a representative embedded platform and found
the predictions of Equation 6 to be highly accurate [22].

In the same work, the models were then used to implement a fre-
quency scaling scheme in order to demonstrate the validity of us-
ing the model for one time slice to predict the characteristics of the
same software in the next. The linux scheduler was modified such
that on each time-slice interrupt, the performance counters were
measured and the models were used to predict the performance at
every frequency setpoint. The frequency setpoint predicted to have
the closest performance to the target was chosen. End-to-end mea-
surements revealed that the overall performance was very close to
the target performance (with most of the error being caused by the
discrete frequency setpoints). This shows that, for the large number
of benchmark applications tested, the models can be used to predict
the workload’s future performance.

5. ENERGY MODEL
We can use the same line of argument to predict the power drawn

for the execution of a program under DVFS. For the time being
we are making a number of assumptions, some of which will be
reviewed in the future.

Firstly, managing I/O power is beyond the scope of this paper.
Hence we assume that I/O power is unaffected by DVFS, and thus
can be treated as static power. This assumption is accurate for pro-
grams that do not perform any (or very little) physical I/O and the
OS consequently keeps all I/O peripherals in the same power state
throughout the program’s execution.

Secondly, we consider leakage power as part of the system’s
static power. This is not necessarily true, as the processor’s capac-
itances may not get fully charged at the highest clock rates. How-
ever, we could not detect any frequency-dependence of static power
on the processor we used, so this assumption seems justified.

Under these assumptions Equation 1 holds for dynamic power,
and the dynamic energy consumed during a time interval ∆t is

Edyn ∝ fV 2∆t. (8)

If the time interval is expressed in CPU cycles, cyc = f∆t, this
becomes

Edyn ∝ cyc × V 2. (9)

This energy corresponds to the energy E = 1
2CV 2 of a capacitor

C, it represents the energy used to charge and discharge the circuit’s

capacitances (such as the gate capacitance on a transistor) during
each clock cycle.

However, we cannot assume this dynamic energy to be indepen-
dent of workload properties, as the number of transistors switched
on each clock cycle depends in general on the executing program.
Instead we can use event counters to capture the effects of program
behaviour.

Modern processors have performance counters which can be
used to count a number of different types of events, some of which
are correlated with power [2,25]. The main question is whether the
countable events provide enough information to predict power.

We can try to model the energy consumed during a time interval
∆t as a linear combination of the various system frequencies and
m available event counts:

E = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)∆t+ (10)

V 2
cpu(α0PMC 0 + · · · + αmPMCm) +

γ4fmem∆t + β0PMC 0 + · · · + βmPMCm +

Pstatic∆t,

where PMC i is the event count of performance monitor i during
the interval ∆t, and αi, βi and γi are the coefficients of the model.
Note that fmem occurs twice, once with a V 2 factor and once with-
out. The reason is that this frequency represents the memory bus,
which interfaces with the on-chip memory controller that is voltage
scaled as well as the memory chips which run at constant voltage.

The rate ri of the event measured by counter i is ri = PMC i
∆t ,

which lets us express power as

P = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)+ (11)

V 2
cpu(α0r0 + · · · + αmrm) +

γ4fmem + β0r0 + · · · + βmrm + Pstatic

This equation can be used to predict the power at one frequency
setting from measurements obtained at a different setting, similar
to Equation 6. However, the execution-time model is also required
in this process, in order to predict the changes in the performance-
counter rates. The mathematics is straightforward but the resulting
formulas are unwieldy, which is why we do not present them here
explicitly.

Provided that the PMCs cover enough of the relevant events,
Equation 11 should be able to predict the scaled power. Combined
with the model of execution time of Section 4, we should then be
able to predict energy usage under DVFS. The important point is
that the coefficients αi, βi and γi should be independent of work-
load characteristics and only depend on the hardware. They can
therefore be determined once for each platform. This can be done
by running a representative set of calibration programs on the tar-
get system, measuring all events and the energy required to execute
them. To maximise the amount of information gathered, the voltage
should be varied to all allowable settings for each frequency.

While modern processors support counting a reasonably large
number of different events (e.g. 14 on the XScale PXA255) the
number of events that can be counted concurrently tends to be much
smaller (only 2 on the PXA255). In practice we therefore need a
further step: determining the most relevant events to count.

We do this by performing an exhaustive search of all n-parameter
models. Each n-parameter model is fit to the calibration data using
least squares regression. The model with the highest R2 was cho-
sen as the best model for n. While we were able to perform this
operation in reasonable time for up to 50 parameters, well known
statistical methods exist for narrowing the search space for larger
numbers. The parameters thus selected provide the best model
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for the execution of a program under DVFS. For the time being
we are making a number of assumptions, some of which will be
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Hence we assume that I/O power is unaffected by DVFS, and thus
can be treated as static power. This assumption is accurate for pro-
grams that do not perform any (or very little) physical I/O and the
OS consequently keeps all I/O peripherals in the same power state
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Secondly, we consider leakage power as part of the system’s
static power. This is not necessarily true, as the processor’s capac-
itances may not get fully charged at the highest clock rates. How-
ever, we could not detect any frequency-dependence of static power
on the processor we used, so this assumption seems justified.

Under these assumptions Equation 1 holds for dynamic power,
and the dynamic energy consumed during a time interval ∆t is

Edyn ∝ fV 2∆t. (8)

If the time interval is expressed in CPU cycles, cyc = f∆t, this
becomes

Edyn ∝ cyc × V 2. (9)

This energy corresponds to the energy E = 1
2CV 2 of a capacitor

C, it represents the energy used to charge and discharge the circuit’s

capacitances (such as the gate capacitance on a transistor) during
each clock cycle.

However, we cannot assume this dynamic energy to be indepen-
dent of workload properties, as the number of transistors switched
on each clock cycle depends in general on the executing program.
Instead we can use event counters to capture the effects of program
behaviour.

Modern processors have performance counters which can be
used to count a number of different types of events, some of which
are correlated with power [2,25]. The main question is whether the
countable events provide enough information to predict power.

We can try to model the energy consumed during a time interval
∆t as a linear combination of the various system frequencies and
m available event counts:

E = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)∆t+ (10)
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γ4fmem∆t + β0PMC 0 + · · · + βmPMCm +
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where PMC i is the event count of performance monitor i during
the interval ∆t, and αi, βi and γi are the coefficients of the model.
Note that fmem occurs twice, once with a V 2 factor and once with-
out. The reason is that this frequency represents the memory bus,
which interfaces with the on-chip memory controller that is voltage
scaled as well as the memory chips which run at constant voltage.

The rate ri of the event measured by counter i is ri = PMC i
∆t ,

which lets us express power as

P = V 2
cpu(γ1fcpu + γ2fbus + γ3fmem)+ (11)

V 2
cpu(α0r0 + · · · + αmrm) +

γ4fmem + β0r0 + · · · + βmrm + Pstatic

This equation can be used to predict the power at one frequency
setting from measurements obtained at a different setting, similar
to Equation 6. However, the execution-time model is also required
in this process, in order to predict the changes in the performance-
counter rates. The mathematics is straightforward but the resulting
formulas are unwieldy, which is why we do not present them here
explicitly.

Provided that the PMCs cover enough of the relevant events,
Equation 11 should be able to predict the scaled power. Combined
with the model of execution time of Section 4, we should then be
able to predict energy usage under DVFS. The important point is
that the coefficients αi, βi and γi should be independent of work-
load characteristics and only depend on the hardware. They can
therefore be determined once for each platform. This can be done
by running a representative set of calibration programs on the tar-
get system, measuring all events and the energy required to execute
them. To maximise the amount of information gathered, the voltage
should be varied to all allowable settings for each frequency.

While modern processors support counting a reasonably large
number of different events (e.g. 14 on the XScale PXA255) the
number of events that can be counted concurrently tends to be much
smaller (only 2 on the PXA255). In practice we therefore need a
further step: determining the most relevant events to count.

We do this by performing an exhaustive search of all n-parameter
models. Each n-parameter model is fit to the calibration data using
least squares regression. The model with the highest R2 was cho-
sen as the best model for n. While we were able to perform this
operation in reasonable time for up to 50 parameters, well known
statistical methods exist for narrowing the search space for larger
numbers. The parameters thus selected provide the best model
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UNIFIED POLICY

tem. The set is chosen to encompass a wide range of charac-

teristics, in order to represent any future workload.

Each benchmark is run individually with no other activ-

ities on the system, once for each frequency setting, while

measuring execution time and energy consumption (using

a wattmeter). We also collect all available performance-

counter events, which requires many identical runs per

benchmark program and per setting in order to sample

all counters (but this effort can be reduced somewhat, see

Section 5.1.2).

We then perform an exhaustive analysis of the results to

determine the set of performance counters that gives the

most accurate prediction of energy use across the whole

characterisation workload and all settings. The regression

also produces the correct weights without making arbitrary

assumptions.

Assuming this model is good, it should allow us to predict

the response of a workload to changes in operating condi-

tions. Specifically, from observing the performance and en-

ergy use at one DVFS setting, it should allow us to predict

performance and energy use at a different setting. We con-

firmed this with a separate set of benchmarks (the validation

workloads). On the embedded platform, we found that we

could predict performance at any other setting with an aver-

age error of less than 2%, and energy use with an average

error of around 6% [Snowdon 2007].

4.4 Idle power characterisation

On many systems the power and transition latency for

C states are stored by the manufacturer in ROM (accessi-

ble via ACPI). When this information is not available, or

the system is in a different state from that measured by the

manufacturer (e.g. a different screen brightness setting), or

one simply does not trust ACPI, the idle powers can be char-

acterised by running benchmarks that put a system with no

foreground activities to sleep for varying periods of time. A

complication is that the OS uses some policy for choosing

idle modes as a function of sleep time, which we did not

want to interfere with. Instead we used the OS’s accounting

of time spent in various sleep states, and used linear regres-

sion on the average idle power

Pave =
∑

i

TCi

Ttotal
PCi

, (4)

where TCi
is the time spent in idle state Ci, Ttotal =∑

i TCi
, and PCi

the power drawn in state Ci. We avoid

having to deal with a potential frequency and voltage de-

pendence of the idle power by always switching to the low-

est frequency when idling. We have not yet integrated into

Koala a prediction of the amount of time spent in each idle

state.

4.5 Selection of settings

During normal execution time we collect the relevant statis-

tics separately for each process. Each time a process blocks

or is pre-empted, we use the power and performance mod-

els to estimate and record its energy usage during the last

execution period. The next time the process is scheduled,

assuming temporal locality, we use the data gathered dur-

ing the previous time slice to determine the optimal setting

according to the system’s (then active) power-management

policy.

Even in the worst case, the frequency switch over-

head is a small percentage of the timeslice (about 1.5%,

for the Opteron), and therefore could be ignored in many

cases. However, modelling the switch overhead according

to Section 4.2 allows reducing the number of frequency

switches, resulting in better performance and energy sav-

ings.

4.6 Policy

We implemented two policies which between them include

and generalise all policies we have found in the literature.

The first, which we call the maximum-degradation policy,

chooses the lowest frequency which keeps (estimated) per-

formance above a certain threshold. A threshold of 90% was

empirically found to give reasonable results [Weissel 2002].

The second policy, which we call the generalised energy-

delay policy, minimises the quantity

η = P 1−αT 1+α, (5)

where P is the power consumption, T the execution time

(inverse performance) andα is a parameter that can be varied
between -1 and 1. Special choices of α result in a number of
particular policies found in the literature. Specifically:

α = 1 maximises performance (forces highest frequency)

α = 0 minimises energy (E = PT )

α = −1 minimises power consumption

α = 1/3 minimises the energy-delay product [AbouGhaza-
leh 2008]ET = PT 2.

Other values map to other policies used in the literature [Pil-

lai 2001, Pénzes 2002]. Our approach allows the OS to easily

adapt the power-management policy to changed operating

conditions.

Note that 0 < α < 1 will throttle different processes dif-
ferently, depending on their characteristics: memory-bound

processes will execute at lower frequency than CPU-bound

processes, as the former achieve relatively high energy sav-

ings for relatively low performance degradation.

In order to minimise run-time costs and avoid floating-

point arithmetic in the kernel, a more suitable representation

of the policy function is

log2 η = (1 − α) log2 E + 2α log2 T. (6)

This can be implemented in fast fixed-point arithmetic us-

ing the clz instruction and a look-up table. Since log is a
monotonic function, minimising log2 η also minimises η.

-1 0 1
α

forces highest performance



-1 0 1

UNIFIED POLICY

tem. The set is chosen to encompass a wide range of charac-

teristics, in order to represent any future workload.

Each benchmark is run individually with no other activ-

ities on the system, once for each frequency setting, while

measuring execution time and energy consumption (using

a wattmeter). We also collect all available performance-

counter events, which requires many identical runs per

benchmark program and per setting in order to sample

all counters (but this effort can be reduced somewhat, see

Section 5.1.2).

We then perform an exhaustive analysis of the results to

determine the set of performance counters that gives the

most accurate prediction of energy use across the whole

characterisation workload and all settings. The regression

also produces the correct weights without making arbitrary

assumptions.

Assuming this model is good, it should allow us to predict

the response of a workload to changes in operating condi-

tions. Specifically, from observing the performance and en-

ergy use at one DVFS setting, it should allow us to predict

performance and energy use at a different setting. We con-

firmed this with a separate set of benchmarks (the validation

workloads). On the embedded platform, we found that we

could predict performance at any other setting with an aver-

age error of less than 2%, and energy use with an average

error of around 6% [Snowdon 2007].

4.4 Idle power characterisation

On many systems the power and transition latency for

C states are stored by the manufacturer in ROM (accessi-

ble via ACPI). When this information is not available, or

the system is in a different state from that measured by the

manufacturer (e.g. a different screen brightness setting), or

one simply does not trust ACPI, the idle powers can be char-

acterised by running benchmarks that put a system with no

foreground activities to sleep for varying periods of time. A

complication is that the OS uses some policy for choosing

idle modes as a function of sleep time, which we did not

want to interfere with. Instead we used the OS’s accounting

of time spent in various sleep states, and used linear regres-

sion on the average idle power

Pave =
∑

i

TCi

Ttotal
PCi

, (4)

where TCi
is the time spent in idle state Ci, Ttotal =∑

i TCi
, and PCi

the power drawn in state Ci. We avoid

having to deal with a potential frequency and voltage de-

pendence of the idle power by always switching to the low-

est frequency when idling. We have not yet integrated into

Koala a prediction of the amount of time spent in each idle

state.

4.5 Selection of settings

During normal execution time we collect the relevant statis-

tics separately for each process. Each time a process blocks

or is pre-empted, we use the power and performance mod-

els to estimate and record its energy usage during the last

execution period. The next time the process is scheduled,

assuming temporal locality, we use the data gathered dur-

ing the previous time slice to determine the optimal setting

according to the system’s (then active) power-management

policy.

Even in the worst case, the frequency switch over-

head is a small percentage of the timeslice (about 1.5%,

for the Opteron), and therefore could be ignored in many

cases. However, modelling the switch overhead according

to Section 4.2 allows reducing the number of frequency

switches, resulting in better performance and energy sav-

ings.

4.6 Policy

We implemented two policies which between them include

and generalise all policies we have found in the literature.

The first, which we call the maximum-degradation policy,

chooses the lowest frequency which keeps (estimated) per-

formance above a certain threshold. A threshold of 90% was

empirically found to give reasonable results [Weissel 2002].

The second policy, which we call the generalised energy-

delay policy, minimises the quantity

η = P 1−αT 1+α, (5)

where P is the power consumption, T the execution time

(inverse performance) andα is a parameter that can be varied
between -1 and 1. Special choices of α result in a number of
particular policies found in the literature. Specifically:

α = 1 maximises performance (forces highest frequency)

α = 0 minimises energy (E = PT )

α = −1 minimises power consumption

α = 1/3 minimises the energy-delay product [AbouGhaza-
leh 2008]ET = PT 2.

Other values map to other policies used in the literature [Pil-

lai 2001, Pénzes 2002]. Our approach allows the OS to easily

adapt the power-management policy to changed operating

conditions.

Note that 0 < α < 1 will throttle different processes dif-
ferently, depending on their characteristics: memory-bound

processes will execute at lower frequency than CPU-bound

processes, as the former achieve relatively high energy sav-

ings for relatively low performance degradation.

In order to minimise run-time costs and avoid floating-

point arithmetic in the kernel, a more suitable representation

of the policy function is

log2 η = (1 − α) log2 E + 2α log2 T. (6)

This can be implemented in fast fixed-point arithmetic us-

ing the clz instruction and a look-up table. Since log is a
monotonic function, minimising log2 η also minimises η.

α

minimises energy-delay product
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tem. The set is chosen to encompass a wide range of charac-

teristics, in order to represent any future workload.

Each benchmark is run individually with no other activ-

ities on the system, once for each frequency setting, while

measuring execution time and energy consumption (using

a wattmeter). We also collect all available performance-

counter events, which requires many identical runs per

benchmark program and per setting in order to sample

all counters (but this effort can be reduced somewhat, see

Section 5.1.2).

We then perform an exhaustive analysis of the results to

determine the set of performance counters that gives the

most accurate prediction of energy use across the whole

characterisation workload and all settings. The regression

also produces the correct weights without making arbitrary

assumptions.

Assuming this model is good, it should allow us to predict

the response of a workload to changes in operating condi-

tions. Specifically, from observing the performance and en-

ergy use at one DVFS setting, it should allow us to predict

performance and energy use at a different setting. We con-

firmed this with a separate set of benchmarks (the validation

workloads). On the embedded platform, we found that we

could predict performance at any other setting with an aver-

age error of less than 2%, and energy use with an average

error of around 6% [Snowdon 2007].

4.4 Idle power characterisation

On many systems the power and transition latency for

C states are stored by the manufacturer in ROM (accessi-

ble via ACPI). When this information is not available, or

the system is in a different state from that measured by the

manufacturer (e.g. a different screen brightness setting), or

one simply does not trust ACPI, the idle powers can be char-

acterised by running benchmarks that put a system with no

foreground activities to sleep for varying periods of time. A

complication is that the OS uses some policy for choosing

idle modes as a function of sleep time, which we did not

want to interfere with. Instead we used the OS’s accounting

of time spent in various sleep states, and used linear regres-

sion on the average idle power

Pave =
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TCi

Ttotal
PCi

, (4)

where TCi
is the time spent in idle state Ci, Ttotal =∑

i TCi
, and PCi

the power drawn in state Ci. We avoid

having to deal with a potential frequency and voltage de-

pendence of the idle power by always switching to the low-

est frequency when idling. We have not yet integrated into

Koala a prediction of the amount of time spent in each idle

state.

4.5 Selection of settings

During normal execution time we collect the relevant statis-

tics separately for each process. Each time a process blocks

or is pre-empted, we use the power and performance mod-

els to estimate and record its energy usage during the last

execution period. The next time the process is scheduled,

assuming temporal locality, we use the data gathered dur-

ing the previous time slice to determine the optimal setting

according to the system’s (then active) power-management

policy.

Even in the worst case, the frequency switch over-

head is a small percentage of the timeslice (about 1.5%,

for the Opteron), and therefore could be ignored in many

cases. However, modelling the switch overhead according

to Section 4.2 allows reducing the number of frequency

switches, resulting in better performance and energy sav-

ings.

4.6 Policy

We implemented two policies which between them include

and generalise all policies we have found in the literature.

The first, which we call the maximum-degradation policy,

chooses the lowest frequency which keeps (estimated) per-

formance above a certain threshold. A threshold of 90% was

empirically found to give reasonable results [Weissel 2002].

The second policy, which we call the generalised energy-

delay policy, minimises the quantity

η = P 1−αT 1+α, (5)

where P is the power consumption, T the execution time

(inverse performance) andα is a parameter that can be varied
between -1 and 1. Special choices of α result in a number of
particular policies found in the literature. Specifically:

α = 1 maximises performance (forces highest frequency)

α = 0 minimises energy (E = PT )

α = −1 minimises power consumption

α = 1/3 minimises the energy-delay product [AbouGhaza-
leh 2008]ET = PT 2.

Other values map to other policies used in the literature [Pil-

lai 2001, Pénzes 2002]. Our approach allows the OS to easily

adapt the power-management policy to changed operating

conditions.

Note that 0 < α < 1 will throttle different processes dif-
ferently, depending on their characteristics: memory-bound

processes will execute at lower frequency than CPU-bound

processes, as the former achieve relatively high energy sav-

ings for relatively low performance degradation.

In order to minimise run-time costs and avoid floating-

point arithmetic in the kernel, a more suitable representation

of the policy function is

log2 η = (1 − α) log2 E + 2α log2 T. (6)

This can be implemented in fast fixed-point arithmetic us-

ing the clz instruction and a look-up table. Since log is a
monotonic function, minimising log2 η also minimises η.

α

minimises energy
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tem. The set is chosen to encompass a wide range of charac-

teristics, in order to represent any future workload.

Each benchmark is run individually with no other activ-

ities on the system, once for each frequency setting, while

measuring execution time and energy consumption (using

a wattmeter). We also collect all available performance-

counter events, which requires many identical runs per

benchmark program and per setting in order to sample

all counters (but this effort can be reduced somewhat, see

Section 5.1.2).

We then perform an exhaustive analysis of the results to

determine the set of performance counters that gives the

most accurate prediction of energy use across the whole

characterisation workload and all settings. The regression

also produces the correct weights without making arbitrary

assumptions.

Assuming this model is good, it should allow us to predict

the response of a workload to changes in operating condi-

tions. Specifically, from observing the performance and en-

ergy use at one DVFS setting, it should allow us to predict

performance and energy use at a different setting. We con-

firmed this with a separate set of benchmarks (the validation

workloads). On the embedded platform, we found that we

could predict performance at any other setting with an aver-

age error of less than 2%, and energy use with an average

error of around 6% [Snowdon 2007].

4.4 Idle power characterisation

On many systems the power and transition latency for

C states are stored by the manufacturer in ROM (accessi-

ble via ACPI). When this information is not available, or

the system is in a different state from that measured by the

manufacturer (e.g. a different screen brightness setting), or

one simply does not trust ACPI, the idle powers can be char-

acterised by running benchmarks that put a system with no

foreground activities to sleep for varying periods of time. A

complication is that the OS uses some policy for choosing

idle modes as a function of sleep time, which we did not

want to interfere with. Instead we used the OS’s accounting

of time spent in various sleep states, and used linear regres-

sion on the average idle power
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where TCi
is the time spent in idle state Ci, Ttotal =∑

i TCi
, and PCi

the power drawn in state Ci. We avoid

having to deal with a potential frequency and voltage de-

pendence of the idle power by always switching to the low-

est frequency when idling. We have not yet integrated into

Koala a prediction of the amount of time spent in each idle

state.

4.5 Selection of settings

During normal execution time we collect the relevant statis-

tics separately for each process. Each time a process blocks

or is pre-empted, we use the power and performance mod-

els to estimate and record its energy usage during the last

execution period. The next time the process is scheduled,

assuming temporal locality, we use the data gathered dur-

ing the previous time slice to determine the optimal setting

according to the system’s (then active) power-management

policy.

Even in the worst case, the frequency switch over-

head is a small percentage of the timeslice (about 1.5%,

for the Opteron), and therefore could be ignored in many

cases. However, modelling the switch overhead according

to Section 4.2 allows reducing the number of frequency

switches, resulting in better performance and energy sav-

ings.

4.6 Policy

We implemented two policies which between them include

and generalise all policies we have found in the literature.

The first, which we call the maximum-degradation policy,

chooses the lowest frequency which keeps (estimated) per-

formance above a certain threshold. A threshold of 90% was

empirically found to give reasonable results [Weissel 2002].

The second policy, which we call the generalised energy-

delay policy, minimises the quantity

η = P 1−αT 1+α, (5)

where P is the power consumption, T the execution time

(inverse performance) andα is a parameter that can be varied
between -1 and 1. Special choices of α result in a number of
particular policies found in the literature. Specifically:

α = 1 maximises performance (forces highest frequency)

α = 0 minimises energy (E = PT )

α = −1 minimises power consumption

α = 1/3 minimises the energy-delay product [AbouGhaza-
leh 2008]ET = PT 2.

Other values map to other policies used in the literature [Pil-

lai 2001, Pénzes 2002]. Our approach allows the OS to easily

adapt the power-management policy to changed operating

conditions.

Note that 0 < α < 1 will throttle different processes dif-
ferently, depending on their characteristics: memory-bound

processes will execute at lower frequency than CPU-bound

processes, as the former achieve relatively high energy sav-

ings for relatively low performance degradation.

In order to minimise run-time costs and avoid floating-

point arithmetic in the kernel, a more suitable representation

of the policy function is

log2 η = (1 − α) log2 E + 2α log2 T. (6)

This can be implemented in fast fixed-point arithmetic us-

ing the clz instruction and a look-up table. Since log is a
monotonic function, minimising log2 η also minimises η.

α

minimises power consumption



IMPLEMENTATION

• recent Linux kernel (2.6.24.4)

• per-process collection of relevant statistics

• policy-decision when process blocks or preempts

• use data from previous time slice to predict optimal setting

• assumes temporal locality

• uses logarithmic tables to simplify calculation (no float)



EVALUATION

The Laptop

• Dell Latitude D600

• Pentium-M 0.8 – 1.8 GHz

• 0.98 – 1.34 V

• three sleep states

• measured at battery

The Server

• AMD Opteron 246

• 0.8 – 2 GHz

• 0.9 – 1.5 V

• high switching overhead

• measured at wall socket



CHARACTERISATION

The Laptop

• number of completed burst 
transactions

• number of lines removed 
from L2 cache

• correlation 0.98 / 0.96

The Server

• quadword write transfers

• L2 cache misses

• dispatch stalls due to 
reorder buffer being full

• DRAM accesses due to page 
conflicts

• correlation 0.98 / 0.98
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Figure 8. Koala behaviour for the first 1000 time slices of

swim on the server with and without latency terms.

5.4 Model Accuracy

Figure 9 shows the performance and energy use of 27 SPEC

CPU2006 benchmarks under the minimum-energy policy

α = 0 in Equation 5) on the server. The benchmarks omit-
ted for space reasons are all CPU-bound and thus uninter-

esting for this platform. The energy saving is between 0 and

15% of the total system energy. The latitude showed even

more significant energy savings (see Figure 11). For some

benchmarks (the memory-bound swim) Koala was able to
save 29% of the energy for only a 3% loss in performance at

the minimum energy setting. This is an estimated 45% sav-

ing of the dynamic energy (estimated by subtracting the idle

power).

For most benchmarks there is good agreement, generally

within a few percent, between the actual performance and

energy use and the estimates produced by our model, which

indicates that the approach generally works well. However,

there is a single case where the model fails spectacularly,

mispredicting performance of the LBM benchmark by 25%

(107 vs. 86) and energy by 20% (68 vs. 85). The system

still saves energy on this benchmark — while the models

fail to predict accurately, they still provide a good heuristic

for frequency selection. More accurate models would allow

more reliable, predictable energy savings. LBMwas the only

such case we observed where the models failed in this way.
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Figure 9. Comparison of estimated vs. actual performance

(top) and energy (bottom) for the minimum energy policy on

the server platform.

There are two possible explanations for this behaviour.

For one, the characterisation benchmark set (CPU2000) may

not cover a wide-enough range of behaviours, as such, fail-

ing to produce a parameter/weight selection that allows pre-

diction of LBM’s behaviour. The second is that the available

set of performance-counter events may just not be suitable

for accurate prediction of the behaviour of this benchmark.

We enabled idle energy in the model (which adjusts the

energy for any extra idle time created thanks to frequency

increases), and ran benchmarks over a fixed time period. In

this case, on both platforms, the energy-optimal frequency is

almost always the minimum.

5.5 Policies

Figure 10 shows how Koala implements the maximum-

degradation policy (see Section 4.6). Curves in the top graph

show the actual performance of representative benchmarks

under varying performance goals. The thick diagonal line

represents the ideal response, under perfect operation all

curves should be on or just above this line.

It can be seen that actual performance mostly gets close

to the target. Some benchmarks run at slightly less than the
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Figure 8. Koala behaviour for the first 1000 time slices of

swim on the server with and without latency terms.

5.4 Model Accuracy

Figure 9 shows the performance and energy use of 27 SPEC

CPU2006 benchmarks under the minimum-energy policy

α = 0 in Equation 5) on the server. The benchmarks omit-
ted for space reasons are all CPU-bound and thus uninter-

esting for this platform. The energy saving is between 0 and

15% of the total system energy. The latitude showed even

more significant energy savings (see Figure 11). For some

benchmarks (the memory-bound swim) Koala was able to
save 29% of the energy for only a 3% loss in performance at

the minimum energy setting. This is an estimated 45% sav-

ing of the dynamic energy (estimated by subtracting the idle

power).

For most benchmarks there is good agreement, generally

within a few percent, between the actual performance and

energy use and the estimates produced by our model, which

indicates that the approach generally works well. However,

there is a single case where the model fails spectacularly,

mispredicting performance of the LBM benchmark by 25%

(107 vs. 86) and energy by 20% (68 vs. 85). The system

still saves energy on this benchmark — while the models

fail to predict accurately, they still provide a good heuristic

for frequency selection. More accurate models would allow

more reliable, predictable energy savings. LBMwas the only

such case we observed where the models failed in this way.
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Figure 9. Comparison of estimated vs. actual performance

(top) and energy (bottom) for the minimum energy policy on

the server platform.

There are two possible explanations for this behaviour.

For one, the characterisation benchmark set (CPU2000) may

not cover a wide-enough range of behaviours, as such, fail-

ing to produce a parameter/weight selection that allows pre-

diction of LBM’s behaviour. The second is that the available

set of performance-counter events may just not be suitable

for accurate prediction of the behaviour of this benchmark.

We enabled idle energy in the model (which adjusts the

energy for any extra idle time created thanks to frequency

increases), and ran benchmarks over a fixed time period. In

this case, on both platforms, the energy-optimal frequency is

almost always the minimum.

5.5 Policies

Figure 10 shows how Koala implements the maximum-

degradation policy (see Section 4.6). Curves in the top graph

show the actual performance of representative benchmarks

under varying performance goals. The thick diagonal line

represents the ideal response, under perfect operation all

curves should be on or just above this line.

It can be seen that actual performance mostly gets close

to the target. Some benchmarks run at slightly less than the
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Figure 10. Maximum-degradation policy on the Latitude

target performance, this results from the discrete setpoints,

inaccurate performance estimation, and Koala’s adjustment

lagging behind changes of workload behaviour.

The horizontal lines extending to the left of the graph

are a result of the limited frequency range available — the

processor cannot be throttled well enough to reach the lower

performance targets. This effect is particularly strong for the

memory-bound benchmarks.

The bottom graph in Figure 10 shows the corresponding

energy use. We can see that the maximum-degradation pol-

icy saves significant energy (up to about 25%) on memory-

bound benchmarks, but actually wastes energy on CPU-

bound benchmarks, clearly indicating that this policy is not

suitable for a wide range of workloads.

The reason is that a CPU-bound benchmark executes in

a constant number of cycles, irrespective of the core fre-

quency. Lower frequency leads to a longer overall execution

time, which increases the static energy components (leak-

age currents in the processor and memory). This is the effect

shown in Figure 1, which indicates that race-to-halt is the

best policy for CPU-bound workloads.

Figure 11 shows that our generalised energy-delay policy

produces much better results. As expected, α = 1 yields the
highest performance while α = 0 produces the lowest en-
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Figure 11. Generalised energy-delay policy on the Latitude.

ergy consumption (with a slight aberration of the patholog-

ical lbm benchmark), and intermediate values produce in-
termediate results. The graphs also show that the standard

energy-delay policy (α = 0.33) produces, for most bench-
marks, an energy use close to that of the minimum-energy

setting, for a moderate performance degradation. Negative

values of α are not useful for energy management, although
small negative values can be used to throttle power dissipa-

tion for thermal management.

Figure 11 also shows that some benchmarks, specifically

the notorious lbm, fail to reach more than about 90% per-

formance at α = 1. This is obviously a result of incorrect
performance estimates leading Koala to choosing an incor-

rect setting. (This is confirmed by lbm also failing to reach
its maximum-frequency energy use at α = 1).
The strength of the generalised energy-delay policy with

its single global parameter is particularly evident when com-

paring the CPU-bound povray with the memory-bound
milc (Figure 12). povray is not slowed down at all for pos-
itive α, since there is no energy to save. For the same α val-
ues, milc is scaled in order to save energy. The policy only
sacrifices performancewhen there is a corresponding energy

benefit. Below α = 0, povray is scaled aggressively to re-
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target performance, this results from the discrete setpoints,

inaccurate performance estimation, and Koala’s adjustment

lagging behind changes of workload behaviour.

The horizontal lines extending to the left of the graph

are a result of the limited frequency range available — the

processor cannot be throttled well enough to reach the lower

performance targets. This effect is particularly strong for the

memory-bound benchmarks.

The bottom graph in Figure 10 shows the corresponding

energy use. We can see that the maximum-degradation pol-

icy saves significant energy (up to about 25%) on memory-

bound benchmarks, but actually wastes energy on CPU-

bound benchmarks, clearly indicating that this policy is not

suitable for a wide range of workloads.

The reason is that a CPU-bound benchmark executes in

a constant number of cycles, irrespective of the core fre-

quency. Lower frequency leads to a longer overall execution

time, which increases the static energy components (leak-

age currents in the processor and memory). This is the effect

shown in Figure 1, which indicates that race-to-halt is the

best policy for CPU-bound workloads.

Figure 11 shows that our generalised energy-delay policy

produces much better results. As expected, α = 1 yields the
highest performance while α = 0 produces the lowest en-
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ergy consumption (with a slight aberration of the patholog-

ical lbm benchmark), and intermediate values produce in-
termediate results. The graphs also show that the standard

energy-delay policy (α = 0.33) produces, for most bench-
marks, an energy use close to that of the minimum-energy

setting, for a moderate performance degradation. Negative

values of α are not useful for energy management, although
small negative values can be used to throttle power dissipa-

tion for thermal management.

Figure 11 also shows that some benchmarks, specifically

the notorious lbm, fail to reach more than about 90% per-

formance at α = 1. This is obviously a result of incorrect
performance estimates leading Koala to choosing an incor-

rect setting. (This is confirmed by lbm also failing to reach
its maximum-frequency energy use at α = 1).
The strength of the generalised energy-delay policy with

its single global parameter is particularly evident when com-

paring the CPU-bound povray with the memory-bound
milc (Figure 12). povray is not slowed down at all for pos-
itive α, since there is no energy to save. For the same α val-
ues, milc is scaled in order to save energy. The policy only
sacrifices performancewhen there is a corresponding energy

benefit. Below α = 0, povray is scaled aggressively to re-
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Figure 12. Generalised energy-delay policy on the server.

duce the system power consumption, but with a correspond-

ing increase in energy used.

The policy applies equally well when the model includes

the system’s idle energy, and fairly trades performance and

execution in this different context. Again, we demonstrate

the idle energy models using well-behaved benchmarks.

Enabling the switch overhead model, we see the number

of frequency switches reduced for most policies and bench-

marks (in the case of swim on the server, this is about 9%)
because the model predicts a higher performance for the in-

cumbent frequency, which it therefore favours slightly. We

also see the energy savings and model accuracy increase

when using these models. We use well-behaved benchmarks

here to highlight the effect of the switch overhead model.

5.6 Multi tasking

Figure 13 shows the effect of running a multi-tasking work-

load consisting of memory-bound swim and CPU-bound
gzip. The top part of the figure shows that the energy and
performance predictions of the combined workload under

the minimum-energy policy is about as good as for separate

executions, and the energy saved is about the average of the

two individual loads, as can be expected. The bottom graph

shows how Koala adapts the setting for the two processes

independently.

5.7 Higher-level Policies

One advantage of the generalised energy-delay policy is

that the single parameter (α), allows the system to adapt to
changing energy-management objectives.

As a demonstration we implemented a daemon which

monitored the laptop’s battery state of charge using ACPI.

At capacities greater than 70%, the daemon sets α to 1, and
the system runs at maximum performance. As the battery is

depleted, the daemon lowers α until the battery gets below
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Figure 13. Koala multi-tasking on the server
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Figure 14. Using the Latitude’s battery state of charge to

drive the power management policy.

30% and then α is set to 0, i.e. minimum energy. Figure 14
shows how the performance-energy tradeoff changes as the

battery depletes while running mcf
Another high-level policy on top of the generalised

energy-delay policy emulates the ondemand governor in
Linux: CPU scaling is based on the available idle time. Dur-

ing periods of low utilisation, α is lowered towards 0 (the

minimum energy setting), and in times of high load, α is

increased toward 1.0 (the maximum performance setting).

5.8 Calculation overheads

A major concern when developing Koala was the overhead

introduced, since this could reduce the energy savings and

be detrimental to performance. In order to minimise the



DISCUSSION

• practicality

• cooperation from vendors, built-in power measurement

• energy management by hardware or software

• hints from applications

• is this too fine-grained

• dumb component shutdown (both software and hardware)


