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QW™ 02 diock bugs

e Study [16] (105 bugs, 31 deadlocks)

- “Some 22% of the deadlock bugs are caused by one
thread acquiring resource held by itself.”

- “Almost all (97%) of the examined deadlock bugs
involve two threads circularly waiting for at most
two resources.”

- “"Many (61%) of the examined deadlock bugs are
fixed by preventing one thread from acquiring one
resource. Such fix can introduce non-deadlock
concurrency bugs.”
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prespeN  Deadlock avoidance done wrong

Thread 1 Thread 2 --- Thread n _ Monitor thread
void buf flush_try page() { void error_monitor_thread() {
rw_lock(&lock); w_lock(&Iock); if(lock_wait_time[i] >

fatal_timeout)
} asserti0, "We crash the server;
It seems to be hung.”);

MySOL buftflu.c } MySOL srvosmv.c

Figure 3. A MySQL bug that is neither an atomicity-violation bug nor
an order-violation bug. The monitor thread is designed to detect deadlock.
It restarts the server when| a thread ¢ has waited for a lock for more than
fatal_timeout amount of time. In this bug, programmers under-estimate
the workload (n could be very large), and therefore the lock waiting time
would frequently exceed fatal timeout and crash the server. (We sim-
plified the code for illustration)
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Doing it (more) right - Dimmunix
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prespeN  Resource Allocation Graph
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Figure 2: Fragment of a resource allocation graph.
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DRESDEN Avoiding Deadlocks

e When DL is found:

— Store “deadlock signature” of participating
threads & wait for some recovery to happen.

e |ater runs:

— For each lock acquisition: check whether this
would lead to a previously seen deadlock state

— If so, make calling thread yield until at least
one other participant has released its locks.

— May lead to starvation - yield cycles.
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DRESDEN Performance & Applicability

e Able to find & cure real-world deadlock bugs.
e Between 2 and 7 % runtime overhead.

e Lock throughput benchmark:
- 4.5% overhead for pthreads, 17.5% for Java

e Overhead mostly from data updates and
avoidance code.

— Automatic calibration of signature stack depth
— false positives vs. performance
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e Signatures are control-flow based, w/o
regarding data - false positives:

update (a, b) update (c, d)
. <==> .
update (b, a) update (d, c)

update (x,Vy)
lock(x); lock(y);

unlock (x); unlock(y):
}
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DRESDEN More remarks

e Why can't we find those bugs before
deploying?
— Static source code analysis = RacerX
e But: need access to source code
— Static binary analysis
e hard
— Dynamic analysis = Valgrind Thread Checker

e RAG: request vs. allow edges?
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DRESDEN Back to [16]

- "Some 22% of the deadlock bugs are caused by one
thread acquiring resource held by itself.”
e Ignored due to availability of other mechanisms
(non-recursive pthreads)
— “Almost all (97%) of the examined deadlock bugs
involve two threads circularly waiting for at most
two resources.”

e Means that real-world RAGs are not that
complex.

- "Many (61%) of the examined deadlock bugs are
fixed by preventing one thread from acquiring one
resource. Such fix can introduce non-deadlock
concurrency bugs.”

e Need to handle yield cycles.
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