TECHNISCHE
@ UNIVERSITAT
DRESDEN

Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Deadlock Immunity: Enabling Systems to

Defend Against Deadlocks
H. Jula, D. Tralamazza, C. Zamfir, G. Candea

presented by Bjoern Doebel

Dresden, 2009-09-08

http://go. funpic.hu

0
X
O
O
IS
©
o)
O

UNIVERSITAT

TECHNISCHE
DRESDEN

TECHNISCHE

QW™ 02 diock bugs

e Study [16] (105 bugs, 31 deadlocks)

- “Some 22% of the deadlock bugs are caused by one
thread acquiring resource held by itself.”

- “Almost all (97%) of the examined deadlock bugs
involve two threads circularly waiting for at most
two resources.”

- “"Many (61%) of the examined deadlock bugs are
fixed by preventing one thread from acquiring one
resource. Such fix can introduce non-deadlock
concurrency bugs.”

TU Dresden, 2009-09-08 Slide 3 von 11

ONIVERSITAT
prespeN Deadlock avoidance done wrong

Thread 1 Thread 2 --- Thread n _ Monitor thread
void buf flush_try page() { void error_monitor_thread() {
rw_lock(&lock); w_lock(&Iock); if(lock_wait_time[i] >

fatal_timeout)
} asserti0, "We crash the server;
It seems to be hung.”);

MySOL buftflu.c } MySOL srvosmv.c

Figure 3. A MySQL bug that is neither an atomicity-violation bug nor
an order-violation bug. The monitor thread is designed to detect deadlock.
It restarts the server when| a thread ¢ has waited for a lock for more than
fatal_timeout amount of time. In this bug, programmers under-estimate
the workload (n could be very large), and therefore the lock waiting time
would frequently exceed fatal timeout and crash the server. (We sim-
plified the code for illustration)

TU Dresden, 2009-09-08 Slide 4 von 11

TECHNISCHE
UNIVERSITAT
DRESDEN

Doing it (more) right - Dimmunix

Avoidance

Q)
C\/.
%

TU Dresden, 2009-09-08

F

RAG
cache

[o% lock-fre

@

sailINENENR

async
event
queue

RAG

00—

periodically do :

o process events
search for cycles

\icycfes found

save to history

[\
_History | gror
Monitor Thread

1oure 1: Dimmunix architecture

Slide 5 von 11

SRR
prespeN Resource Allocation Graph

—P hold =—> request
onEvent : 72\ -n) yield % allow

handleRequest:19
doFilter:34

acquireSocket:44*Sk

onEvent:72 ’
handleRequest:lg\\ :
doFilter: 34 ;"
acquireSocket:44 x;r'

Z\ P

'¢' onEvent:72
S handleRequest:16
"

doForwardReq: 54
lockReqg: 14

Figure 2: Fragment of a resource allocation graph.

TU Dresden, 2009-09-08 Slide 6 von 11

IR
DRESDEN Avoiding Deadlocks

e When DL is found:

— Store “deadlock signature” of participating
threads & wait for some recovery to happen.

e |ater runs:

— For each lock acquisition: check whether this
would lead to a previously seen deadlock state

— If so, make calling thread yield until at least
one other participant has released its locks.

— May lead to starvation - yield cycles.

TU Dresden, 2009-09-08 Slide 7 von 11

IR
DRESDEN Performance & Applicability

e Able to find & cure real-world deadlock bugs.
e Between 2 and 7 % runtime overhead.

e Lock throughput benchmark:
- 4.5% overhead for pthreads, 17.5% for Java

e Overhead mostly from data updates and
avoidance code.

— Automatic calibration of signature stack depth
— false positives vs. performance

TU Dresden, 2009-09-08 Slide 8 von 11

IR
DRESDEN Remarks

e Signatures are control-flow based, w/o
regarding data - false positives:

update (a, b) update (c, d)
. <==> .
update (b, a) update (d, c)

update (x,Vy)
lock(x); lock(y);

unlock (x); unlock(y):
}

TU Dresden, 2009-09-08 Slide 9 von 11

IR
DRESDEN More remarks

e Why can't we find those bugs before
deploying?
— Static source code analysis = RacerX
e But: need access to source code
— Static binary analysis
e hard
— Dynamic analysis = Valgrind Thread Checker

e RAG: request vs. allow edges?

TU Dresden, 2009-09-08 Slide 10 von 11

IR
DRESDEN Back to [16]

- "Some 22% of the deadlock bugs are caused by one
thread acquiring resource held by itself.”
e Ignored due to availability of other mechanisms
(non-recursive pthreads)
— “Almost all (97%) of the examined deadlock bugs
involve two threads circularly waiting for at most
two resources.”

e Means that real-world RAGs are not that
complex.

- "Many (61%) of the examined deadlock bugs are
fixed by preventing one thread from acquiring one
resource. Such fix can introduce non-deadlock
concurrency bugs.”

e Need to handle yield cycles.

TU Dresden, 2009-09-08 Slide 11 von 11

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

