
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Deadlock Immunity: Enabling Systems to
Defend Against Deadlocks

H. Jula, D. Tralamazza, C. Zamfir, G. Candea

Dresden, 2009-09-08

presented by Bjoern Doebel

TU Dresden, 2009-09-08 Slide 2 von 11

Deadlocks

TU Dresden, 2009-09-08 Slide 3 von 11

Deadlock bugs

• Study [16] (105 bugs, 31 deadlocks)

– “Some 22% of the deadlock bugs are caused by one
thread acquiring resource held by itself.”

– “Almost all (97%) of the examined deadlock bugs
involve two threads circularly waiting for at most
two resources.”

– “Many (61%) of the examined deadlock bugs are
fixed by preventing one thread from acquiring one
resource. Such fix can introduce non-deadlock
concurrency bugs.”

TU Dresden, 2009-09-08 Slide 4 von 11

Deadlock avoidance done wrong

TU Dresden, 2009-09-08 Slide 5 von 11

Doing it (more) right - Dimmunix

TU Dresden, 2009-09-08 Slide 6 von 11

Resource Allocation Graph

TU Dresden, 2009-09-08 Slide 7 von 11

Avoiding Deadlocks

• When DL is found:
– Store “deadlock signature” of participating

threads & wait for some recovery to happen.

• Later runs:
– For each lock acquisition: check whether this

would lead to a previously seen deadlock state
– If so, make calling thread yield until at least

one other participant has released its locks.
– May lead to starvation – yield cycles.

TU Dresden, 2009-09-08 Slide 8 von 11

Performance & Applicability

• Able to find & cure real-world deadlock bugs.

• Between 2 and 7 % runtime overhead.

• Lock throughput benchmark:
– 4.5% overhead for pthreads, 17.5% for Java

• Overhead mostly from data updates and
avoidance code.
– Automatic calibration of signature stack depth

– false positives vs. performance

TU Dresden, 2009-09-08 Slide 9 von 11

Remarks

• Signatures are control-flow based, w/o
regarding data – false positives:

update(a,b) update(c,d)
 .. <--> ..
update(b,a) update(d,c)

update(x,y) {
 lock(x); lock(y);
 ..
 unlock(x); unlock(y);
}

TU Dresden, 2009-09-08 Slide 10 von 11

More remarks

• Why can't we find those bugs before
deploying?
– Static source code analysis RacerX→

• But: need access to source code
– Static binary analysis

• hard
– Dynamic analysis Valgrind Thread Checker→

• RAG: request vs. allow edges?

TU Dresden, 2009-09-08 Slide 11 von 11

Back to [16]

– “Some 22% of the deadlock bugs are caused by one
thread acquiring resource held by itself.”
• Ignored due to availability of other mechanisms

(non-recursive pthreads)
– “Almost all (97%) of the examined deadlock bugs

involve two threads circularly waiting for at most
two resources.”
• Means that real-world RAGs are not that

complex.
– “Many (61%) of the examined deadlock bugs are

fixed by preventing one thread from acquiring one
resource. Such fix can introduce non-deadlock
concurrency bugs.”
• Need to handle yield cycles.

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

