
Department of Computer Science Institute of System Architecture, Operating Systems Group

CARSTEN WEINHOLD

MIXED-MODE
MULTICORE RELIABILITY
PHILIP M. WELLS, KOUSHIK CHAKRABORTY, GURINDAR S. SOHI

TU Dresden Mixed-Mode Multicore Reliability

MOTIVATION
■ Expected hardware development:

■ Increased rate of hardware failures

■ CPUs become less reliable

■ Use Dual-Modular Redundancy (DMR) to
maintain high reliability

■ Problems:

■ Expensive (up to 4x slowdown)

■ Some applications don’t need it

2

TU Dresden Mixed-Mode Multicore Reliability

ARCHITECTURE

3

Figure 1. Mixed-Mode with a Single-OS

levels of hardware faults [23], but a user may be willing to
sacrifice a certain degree of performance to ensure the in-
tegrity of their financial data. Another example is a consoli-
dated server hosting multiple guest virtual machines (VMs)
for multiple customers with different service-level agree-
ments. Some customers may require very high reliability (at
a premium price). Other customers may demand more per-
formance at an economy price, but are willing to tolerate
occasional data corruption and down-time due to crashes.

Such scenarios result in a system where one set of ap-
plications, the reliable applications, need the protection of
DMR, while another set, the performance applications, need
the high performance available through independent utiliza-
tion of all of the computing resources. To enable such a sys-
tem, this paper proposes the design of a Mixed-Mode Multi-

core (MMM) that can execute both types of applications si-
multaneously on the same machine. The basics of an MMM
seem simple: Use DMR for reliable applications, and turn
off DMR for performance applications.

Although several architectural DMR proposals suggest
that DMR can easily be turned on and off (e.g., [19, 32]),
a key observation of this paper is that dynamically switch-
ing between DMR and non-DMR within a single system is
not as straightforward as it might appear. In particular, we
observe that 1) care must be taken to preserve the integrity
of reliable applications’ memory and register state, and 2)
the desire to execute additional independent software threads
for a performance application complicates the scheduling of
software threads to cores. As part of the solution to the first
problem, we propose to maintain a small amount of redun-
dancy for non-DMR applications by re-validating permis-
sion for any stores that miss in the L1 cache. To address
the second problem, we propose to leverage hardware vir-
tualization techniques to flexibly and quickly assign threads
to cores. The resulting MMM system is able to protect the
integrity of reliable applications needing DMR, significantly
improve overall performance of applications that do not, and
preserve a simple interface to the system software (i.e., op-
erating system or virtual machine monitor).

2. Mixed-Mode Overview

The primary objective of an MMM is simple: provide re-
liability for software that requires it, and improve the per-

Figure 2. Mixed-Mode Consolidated Server

formance of software that does not. Figure 1 depicts this
basic objective for an MMM running two applications on
a single-OS system. One application always requires high
performance, and the other requires reliability. Both the reli-
able application and the operating system must be executed
in reliable mode for reasons described in Section 3.4.2. An
MMM can also offer differentiated service to different VMs
within a consolidated server under the control of a Virtual
Machine Monitor (VMM). An example of such a system is
depicted in Figure 2. In this case, one guest Virtual Machine
(VM) (including the OS and applications) requires reliabil-
ity, while the other guest VM requires performance. Again,
the highest privileged software (in this case the VMM) must
always run in reliable mode, while less privileged software
has the option of running with higher performance.

Additional objectives of an MMM system are 1) to iso-
late reliable applications from any hardware faults affecting
software executing in performance mode, and 2) to perform
mixed-mode operation with only minor changes to the sys-
tem and application software.

We propose two different ways of handling high-
performance mode in an MMM system, MMM-IPC and
MMM-TP. The simpler method, MMM-IPC idles the re-
dundant cores, eliminating verification and synchronization
delays, and improving the Instructions per Cycle (IPC) of
each thread by 34-48%.1 When in high-performance mode,
MMM-TP uses all available cores to independently run ad-
ditional software threads of high-performance applications,
improving throughput by 2.5–4 times. In either system, dif-
ferent cores can be in different modes at different times.

2.1 Mixed-Mode Challenges

Although the objectives are straightforward, the implications
of running different applications in different modes on the
same machine are less so. Two key challenges in particu-
lar make building an MMM more complicated than simply
turning off DMR when high performance is required. First,
the memory and register state of reliable applications must

1 By placing idle redundant cores in a low-power sleep state, MMM-IPC
would also likely either reduce the chip’s power consumption, or allow
the remaining cores to use the excess power budget by increasing their
frequency, for example. We do not evaluate these power options in this
paper, however.

Figure 1. Mixed-Mode with a Single-OS

levels of hardware faults [23], but a user may be willing to
sacrifice a certain degree of performance to ensure the in-
tegrity of their financial data. Another example is a consoli-
dated server hosting multiple guest virtual machines (VMs)
for multiple customers with different service-level agree-
ments. Some customers may require very high reliability (at
a premium price). Other customers may demand more per-
formance at an economy price, but are willing to tolerate
occasional data corruption and down-time due to crashes.

Such scenarios result in a system where one set of ap-
plications, the reliable applications, need the protection of
DMR, while another set, the performance applications, need
the high performance available through independent utiliza-
tion of all of the computing resources. To enable such a sys-
tem, this paper proposes the design of a Mixed-Mode Multi-

core (MMM) that can execute both types of applications si-
multaneously on the same machine. The basics of an MMM
seem simple: Use DMR for reliable applications, and turn
off DMR for performance applications.

Although several architectural DMR proposals suggest
that DMR can easily be turned on and off (e.g., [19, 32]),
a key observation of this paper is that dynamically switch-
ing between DMR and non-DMR within a single system is
not as straightforward as it might appear. In particular, we
observe that 1) care must be taken to preserve the integrity
of reliable applications’ memory and register state, and 2)
the desire to execute additional independent software threads
for a performance application complicates the scheduling of
software threads to cores. As part of the solution to the first
problem, we propose to maintain a small amount of redun-
dancy for non-DMR applications by re-validating permis-
sion for any stores that miss in the L1 cache. To address
the second problem, we propose to leverage hardware vir-
tualization techniques to flexibly and quickly assign threads
to cores. The resulting MMM system is able to protect the
integrity of reliable applications needing DMR, significantly
improve overall performance of applications that do not, and
preserve a simple interface to the system software (i.e., op-
erating system or virtual machine monitor).

2. Mixed-Mode Overview

The primary objective of an MMM is simple: provide re-
liability for software that requires it, and improve the per-

Figure 2. Mixed-Mode Consolidated Server

formance of software that does not. Figure 1 depicts this
basic objective for an MMM running two applications on
a single-OS system. One application always requires high
performance, and the other requires reliability. Both the reli-
able application and the operating system must be executed
in reliable mode for reasons described in Section 3.4.2. An
MMM can also offer differentiated service to different VMs
within a consolidated server under the control of a Virtual
Machine Monitor (VMM). An example of such a system is
depicted in Figure 2. In this case, one guest Virtual Machine
(VM) (including the OS and applications) requires reliabil-
ity, while the other guest VM requires performance. Again,
the highest privileged software (in this case the VMM) must
always run in reliable mode, while less privileged software
has the option of running with higher performance.

Additional objectives of an MMM system are 1) to iso-
late reliable applications from any hardware faults affecting
software executing in performance mode, and 2) to perform
mixed-mode operation with only minor changes to the sys-
tem and application software.

We propose two different ways of handling high-
performance mode in an MMM system, MMM-IPC and
MMM-TP. The simpler method, MMM-IPC idles the re-
dundant cores, eliminating verification and synchronization
delays, and improving the Instructions per Cycle (IPC) of
each thread by 34-48%.1 When in high-performance mode,
MMM-TP uses all available cores to independently run ad-
ditional software threads of high-performance applications,
improving throughput by 2.5–4 times. In either system, dif-
ferent cores can be in different modes at different times.

2.1 Mixed-Mode Challenges

Although the objectives are straightforward, the implications
of running different applications in different modes on the
same machine are less so. Two key challenges in particu-
lar make building an MMM more complicated than simply
turning off DMR when high performance is required. First,
the memory and register state of reliable applications must

1 By placing idle redundant cores in a low-power sleep state, MMM-IPC
would also likely either reduce the chip’s power consumption, or allow
the remaining cores to use the excess power budget by increasing their
frequency, for example. We do not evaluate these power options in this
paper, however.

TU Dresden Mixed-Mode Multicore Reliability

CHALLENGES
■ Paper proposes mixed multicore:

■ Redundancy support in hardware

■ Switch on / off as needed

■ Simple idea, but two key challenges:

■ Protect high-reliability applications from
faults occurring in non-DMR operation

■ Scheduling of cores complicated by desire
to execute more high-performance threads

4

TU Dresden Mixed-Mode Multicore Reliability

PROTECTION
■ Memory and register state of DMR

applications need to be protected

■ Standard mechanisms (page tables, ...)
only sufficient in DMR mode

■ Some redundancy in non-DMR mode:

■ OS / VMM executed in reliable mode

■ Application executed without redundancy ...

■ ... except: permission for any store checked

5

TU Dresden Mixed-Mode Multicore Reliability

HW SUPPORT

6

■ Protection assistance table (PAT):

■ Similar to inverse page table

■ 1 permission bit per physical page (allow
reliable mode only / any software)

■ Protection Assistance Buffer (PAB):

■ Like TLB, caches PAT entries

■ Consulted in non-reliable mode only

■ Both TLB and PAB must indicate permission

TU Dresden Mixed-Mode Multicore Reliability

PAB

7

TU Dresden Mixed-Mode Multicore Reliability

REUNION

8

■ Based on previous work „Reunion“

■ Loose lock stepping:

■ 2 cores: one vocal, one mute

■ Additional CHECK stage in pipeline

■ Fingerprint compared before commit

■ Implemented below ISA

■ VCPUs presented to system software

TU Dresden Mixed-Mode Multicore Reliability

MMM-IPC: SWITCH

9

■ Leaving DMR mode:

■ Both cores save copies of privileged state

■ Use separate „scratchpad space“ in
physical memory

TU Dresden Mixed-Mode Multicore Reliability

MMM-IPC: SWITCH

10

■ Enter DMR mode:

■ Vocal core:

■ Stores current user state to cache

■ Loads previous privileged state

■ Mute core loads:

■ Its own copy of previous privileged state

■ Current user registers from cache

■ Vocal cores privileged sate for comparison

■ Both privileged states must match

TU Dresden Mixed-Mode Multicore Reliability

MMM-TP

11
Figure 4. Improving Throughput in a Mixed-Mode Multicore by Overcommitting Cores

We model each core as having an 8-stage pipeline, out-
of-order, 2-wide issue, an 128-entry instruction window, and
operating at 3 GHz. The load/store queue contains entries for
32 loads and 32 stores. The pipeline is 9 stages when using
Reunion. The chip consists of 16 cores. Located with each
core is a split 16k, 2-way, write-through I&D caches, and
a unified 512k, 4-way private L2. We also model an 8MB,
16-way, shared L3 that is exclusive with the L2s, and has a
55-cycle load to use latency. Cores maintain coherence via a
MOSI directory protocol over a point-to-point interconnect
with an average 10 cycle latency. The L2 directory uses
shadow tags, which are co-located with each L3 bank. Main
memory is 350 cycles load-to-use, with 40 GB/sec of off-
chip bandwidth. In order to not overstate the penalty of
DMR, we model a hardware-filled TLB, like [29].

A dedicated fingerprint network with a 10-cycle latency is
assumed, as was done in the original Reunion proposal [29].
Reunion’s “sync requests” are not implemented through L2
directory protocol modifications, but rather through direct
messages sent from the vocal to the mute core.

The first set of experiments in Section 5.2 assumes a
parallel PAB and L2 access. A PAB latency of two cycles
is used for serial PAB access in the second set. Although the
full software overhead of PAT manipulation is not modeled,
it is expected to be very minimal, since it should only be
necessary only when page mappings change.

To implement virtualization, we evaluate a thin virtual-
machine layer implemented primarily in hardware, similar
to [34]. We do model the overhead of maintaining VCPU
state. This task is performed by storing the running VCPU’s
state in a portion of cacheable physical memory and loading
it later from the same or a different core. The state can
be transparently migrated to other cores using the on-chip
coherence protocol.

Applications We use several workloads for these exper-
iments, all of which are running on Solaris 9. Apache
and Zeus are static web servers driven by the Surge [2]
client. We do not use any think time in the Surge client.
OLTP is a TPC-C-like workload using IBM’s DB2 database.
The database is scaled down from TPC-C specification to
about 800MB and runs 192 concurrent user threads with
no think time. pgoltp uses the PostgreSQL database ver-

sion 8.1.3 [21] to run TPC-C-like queries from the OSDL
dbt2 test suite [20]. The database is scaled similarly to
OLTP. pgbench runs TPC-B like queries on the Post-
greSQL database [21]. pmake is a parallel compile of Post-
greSQL using GNU make and the Sun Forte Developer 7 C
compiler. We do not include serial phases.

Each simulation runs for 100 million cycles. Due to work-
load variability, we simulate multiple runs and report aver-
age results with 95% confidence intervals. We use committed

user instructions as our metric for ’work’ in all experiments.
User commits has been shown to correlate well with other
‘work’ metrics, such as workload transactions [37].

Consolidated Server Experiments Experiments in Sec-
tions 5.2 and 5.3 evaluate a mixed-mode consolidated server
where one guest VM is running an application that requires
reliability, and a second guest VM is running an application
that required performance (similar to Figure 2).

Each consolidated workload combines two guest VMs
running the applications described above. In each work-
loads, the same application is running in both guests. Each
guest VM is configured with its own I/O devices and phys-
ical memory space, but VMs dynamically share the proces-
sors and caches. We are assuming the use of a software
VMM, similar to VMWare ESX Server, which virtualizes
I/O, memory, and privileged instructions. Since we do not
have access to a software VMM which supports our simu-
lated SPARC platform, we are unable to model the overhead
of virtualizing memory or I/O. The two guest OSs are allo-
cated enough physical memory so that the VMM does not
need to swap real memory. This methodology for simulat-
ing consolidated servers is similar to that used by in prior
research [17, 34].

For evaluating MMM-IPC, two guest VMs are running,
each of which exposes 8 VCPUs to the VMM. The first VM
runs redundantly on all 16 cores, and the second runs in per-
formance mode using only 8 cores. Guests are gang sched-
uled using a 1ms (3 million cycle) timeslice. Using a longer
timeslice with this methodology can create performance in-
consistencies due to OS timers and interrupts.

For evaluating MMM-TP, we again model two guest
VMs. The reliability VM runs 8 VCPUs on 16 cores, and the
performance VM runs 16 VCPUs on all 16 cores. To avoid

■ MMM-TP solution can utilize all cores

■ Overcommitting of VCPUs

■ Redundant execution can force some
VCPUs to pause

TU Dresden Mixed-Mode Multicore Reliability

EVALUATION
■ MMM-IPC and MMM-TP simulated:

■ „Simics MAI“ for model

■ Cycle-accurate module for processor and
memory hierarchy

■ Server benchmarks evaluated

■ Only VM architecture benchmarked

■ Estimates for architecture that runs OS +
applications directly

12

TU Dresden Mixed-Mode Multicore Reliability

DMR OVERHEAD

13

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 P
er

−t
hr

ea
d

U
se

r I
P

C

0

0.2

0.4

0.6

0.8

1

1.2

No DMR 2X No DMR Reunion

(a) Single Thread Performance

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.2

0.4

0.6

0.8

1

No DMR 2X No DMR Reunion

(b) Overall Throughput

Figure 5. DMR Performance Comparison

(256-entry) instruction window and a TSO memory consis-
tency model, reducing the resource pressure of store latency,
both on the instruction window and in the presence of SIs. In
fact, Smolens reports that SC reduces the performance of Re-
union by 30% on average [28], likely making this the largest
contributor to the discrepancy. While both target configura-
tions can potentially represent realistic systems, the reader
should keep in mind that, even with a different configura-
tion, per-thread IPC is only a small part of the motivation for
mixed-mode operation. The original Reunion work did not
examine throughput overheads.

5.2 Performance of a Mixed-Mode Multicore

A mixed-mode consolidated server can provide differenti-
ated service to different VMs, as described in Section 2. Fig-
ure 6(a) demonstrates the per-thread performance of mixed-
mode operation. The striped bars at the bottom represent the
normalized per-thread IPC of the guest VM that requires the
high reliability of DMR. The solid, top bars represent the
guest VM that does not require such high reliability.

In a traditional consolidated server, if one guest VM re-
quired reliability, then all guests would need to run with
DMR to protect the integrity of the reliable VM. The left
set of bars (labeled DMR Base) thus represents the base-
line, where reliable, DMR mode is used for both VMs. The
second set of bars, labeled MMM-IPC, represents the first
MMM scheme where unused redundant cores are allowed to
idle. Due to the IPC overhead of DMR execution, the high-
performance guest VM observes 25–85% speedup over the
full DMR configuration. The runtime of the reliable VM is
virtually unchanged, thoughpgoltp observes a 6.5% slow-
down due to the performance application more quickly dis-
placing the reliable application’s data in the shared L3 cache.
Although we do not capture the effect on application’s user-

request latency, this per-thread IPC provides an indication of
expected improvements.

The third set of bars, labeled MMM-TP, represents the
second MMM system, which can better utilize all avail-
able cores to execute additional VCPUs. In this case, the
per-thread IPC of those VCPUs still increases, though since
more VCPUs are executing and consuming cache resources,
the speedup of the high-performance VM is 24–67%, some-
what less than that of MMM-IPC.

Per-thread IPC is only part of the picture, however, since
MMM-TP is using those otherwise-idle cores to execute
more VCPUs. Figure 6(b) shows the overall system through-
put, similarly normalized to the always-DMR baseline, and
broken into throughput from each guest VM. The through-
put of MMM-IPC is the same as the per-thread IPC speedup
from Figure 6(a), since the same 8 VCPUs are executing
in either mode. However, for scalable applications, such as
these commercial workloads, improvements in throughput
can be significant using MMM-TP, where the first VM now
independently executes 16 VCPUs. This high-performance
VM observes speedups of 2.4–3.6 due to the combined effect
of per-VCPU IPC increase, and additional throughput from
more VCPUs. Speedup of this VM over the static MMM
configuration are 1.8–1.9. The throughput of the machine
overall increases by 1.7-2.3X.

Effect of PAB Latency In previous results, we have as-
sumed that the PAB was accessed in parallel with the L2
tags, causing no additional latency for any memory opera-
tions. We have also examined the impact of a 2-cycle PAB
lookup in serial before accessing the L2 cache. Serialized
accesses can possibly reduce the complexity of the cache
controller. Since only store write-throughs are stalled by
this serial lookup, the performance impact arises primar-
ily through increased pressure on the instruction window

TU Dresden Mixed-Mode Multicore Reliability

MMM BENEFIT

14

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 P
er

−t
hr

ea
d

U
se

r I
P

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MMM−TP

DMR

MMM−IPC

DMR

DMR Base

DMR

(a) Single Thread Performance

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.5

1

1.5

2

2.5

MMM−TP

DMR

MMM−IPC

DMR

DMR Base

DMR

(b) Overall Throughput

Figure 6. Mixed-Mode Performance Comparison

and other structures. Detailed results (not shown for brevity)
demonstrate that serial PAB lookups reduce the IPC of the
application in performance mode by 3–10%. Such a small
performance penalty is easily justified by the approximately
3X throughput gained by the ability to run in performance
mode. The reliable application does not use the PAB, and
therefore its performance does not change.

5.3 Overhead of Mode Switching

In addition to the PAB, mixed-mode operation can in-
cur overhead during mode transitions. For the consolidated
servers in the previous section, these transitions are infre-
quent, and their cost is easily amortized. However, with a
trap-and-emulate software VMM, or if performing mixed-
mode in a single-OS system, mode transitions need to occur
much more frequently: Every time a guest VM attempts to
perform a privileged operation, or a performance application
enters or exits the operating system (e.g., for a system call),
a mode switch occurs. To understand the expected overheads
of mixed-mode operation in such systems, this section first
examines the cost of entering and leaving dual-redundancy,
and then examines the frequency that mode switching would
be necessary. We show that the overheads are low enough
that even frequent mode switches can be easily outweighed
by the benefits of mixed-mode operation.

Switching Overhead Table 1 presents the average over-
head (in cycles) for each VCPU to perform a mode switch.
This data is taken from MMM-TP, which has higher aver-
age overhead than MMM-IPC because it must flush the L2
cache. As shown in the table, the overhead of the Enter DMR

mode switch is approximately 2.2k cycles for all bench-
marks. The overhead includes the cost of context switching
out the state of the performance VCPU, switching in the state

Enter DMR Leave DMR

Apache 2.4k 10.4k
OLTP 2.4k 10.3k
pgoltp 2.3k 10.2k
pmake 2.2k 9.9k

pgbench 2.3k 10.2k
Zeus 2.4k 10.3k

Table 1. Mixed-Mode Switching Overheads (cycles)

User Cycles OS Cycles

Apache 59k 98k
OLTP 218k 52k
pgoltp 210k 35k
pmake 312k 47k

pgbench 554k 126k
Zeus 65k 220k

Table 2. Cycles Before Switching Modes for Single-OS

of the newly scheduled reliable VCPU, and synchronizing
the vocal and mute cores. The overhead of Leave DMR in-
cludes the cost of synchronizing, context switching out the
reliable VCPU, flushing the L2 cache, and context switching
in the newly scheduled VCPU running a high-performance
application. This overhead is much larger due to the cost of
flushing the L2 cache, which takes approximately 8k cycles
since we pessimistically assume that only one cache line can
be flushed or written back to the shared L3 per cycle.

Switching Frequency The cost of the mode transitions in
Table 1 is relatively small if these transitions occur infre-
quently, as is the expected case for a mixed-mode consol-
idated server using some hardware virtualization support
(e.g., [31]), or para-virtualized guests (e.g., [3]). However,

TU Dresden Mixed-Mode Multicore Reliability

MMM OVERHEAD

15

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 P
er

−t
hr

ea
d

U
se

r I
P

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MMM−TP

DMR

MMM−IPC

DMR

DMR Base

DMR

(a) Single Thread Performance

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.5

1

1.5

2

2.5

MMM−TP

DMR

MMM−IPC

DMR

DMR Base

DMR

(b) Overall Throughput

Figure 6. Mixed-Mode Performance Comparison

and other structures. Detailed results (not shown for brevity)
demonstrate that serial PAB lookups reduce the IPC of the
application in performance mode by 3–10%. Such a small
performance penalty is easily justified by the approximately
3X throughput gained by the ability to run in performance
mode. The reliable application does not use the PAB, and
therefore its performance does not change.

5.3 Overhead of Mode Switching

In addition to the PAB, mixed-mode operation can in-
cur overhead during mode transitions. For the consolidated
servers in the previous section, these transitions are infre-
quent, and their cost is easily amortized. However, with a
trap-and-emulate software VMM, or if performing mixed-
mode in a single-OS system, mode transitions need to occur
much more frequently: Every time a guest VM attempts to
perform a privileged operation, or a performance application
enters or exits the operating system (e.g., for a system call),
a mode switch occurs. To understand the expected overheads
of mixed-mode operation in such systems, this section first
examines the cost of entering and leaving dual-redundancy,
and then examines the frequency that mode switching would
be necessary. We show that the overheads are low enough
that even frequent mode switches can be easily outweighed
by the benefits of mixed-mode operation.

Switching Overhead Table 1 presents the average over-
head (in cycles) for each VCPU to perform a mode switch.
This data is taken from MMM-TP, which has higher aver-
age overhead than MMM-IPC because it must flush the L2
cache. As shown in the table, the overhead of the Enter DMR

mode switch is approximately 2.2k cycles for all bench-
marks. The overhead includes the cost of context switching
out the state of the performance VCPU, switching in the state

Enter DMR Leave DMR

Apache 2.4k 10.4k
OLTP 2.4k 10.3k
pgoltp 2.3k 10.2k
pmake 2.2k 9.9k

pgbench 2.3k 10.2k
Zeus 2.4k 10.3k

Table 1. Mixed-Mode Switching Overheads (cycles)

User Cycles OS Cycles

Apache 59k 98k
OLTP 218k 52k
pgoltp 210k 35k
pmake 312k 47k

pgbench 554k 126k
Zeus 65k 220k

Table 2. Cycles Before Switching Modes for Single-OS

of the newly scheduled reliable VCPU, and synchronizing
the vocal and mute cores. The overhead of Leave DMR in-
cludes the cost of synchronizing, context switching out the
reliable VCPU, flushing the L2 cache, and context switching
in the newly scheduled VCPU running a high-performance
application. This overhead is much larger due to the cost of
flushing the L2 cache, which takes approximately 8k cycles
since we pessimistically assume that only one cache line can
be flushed or written back to the shared L3 per cycle.

Switching Frequency The cost of the mode transitions in
Table 1 is relatively small if these transitions occur infre-
quently, as is the expected case for a mixed-mode consol-
idated server using some hardware virtualization support
(e.g., [31]), or para-virtualized guests (e.g., [3]). However,

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 P
er

−t
hr

ea
d

U
se

r I
P

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MMM−TP

DMR

MMM−IPC

DMR

DMR Base

DMR

(a) Single Thread Performance

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.5

1

1.5

2

2.5

MMM−TP

DMR

MMM−IPC

DMR

DMR Base

DMR

(b) Overall Throughput

Figure 6. Mixed-Mode Performance Comparison

and other structures. Detailed results (not shown for brevity)
demonstrate that serial PAB lookups reduce the IPC of the
application in performance mode by 3–10%. Such a small
performance penalty is easily justified by the approximately
3X throughput gained by the ability to run in performance
mode. The reliable application does not use the PAB, and
therefore its performance does not change.

5.3 Overhead of Mode Switching

In addition to the PAB, mixed-mode operation can in-
cur overhead during mode transitions. For the consolidated
servers in the previous section, these transitions are infre-
quent, and their cost is easily amortized. However, with a
trap-and-emulate software VMM, or if performing mixed-
mode in a single-OS system, mode transitions need to occur
much more frequently: Every time a guest VM attempts to
perform a privileged operation, or a performance application
enters or exits the operating system (e.g., for a system call),
a mode switch occurs. To understand the expected overheads
of mixed-mode operation in such systems, this section first
examines the cost of entering and leaving dual-redundancy,
and then examines the frequency that mode switching would
be necessary. We show that the overheads are low enough
that even frequent mode switches can be easily outweighed
by the benefits of mixed-mode operation.

Switching Overhead Table 1 presents the average over-
head (in cycles) for each VCPU to perform a mode switch.
This data is taken from MMM-TP, which has higher aver-
age overhead than MMM-IPC because it must flush the L2
cache. As shown in the table, the overhead of the Enter DMR

mode switch is approximately 2.2k cycles for all bench-
marks. The overhead includes the cost of context switching
out the state of the performance VCPU, switching in the state

Enter DMR Leave DMR

Apache 2.4k 10.4k
OLTP 2.4k 10.3k
pgoltp 2.3k 10.2k
pmake 2.2k 9.9k

pgbench 2.3k 10.2k
Zeus 2.4k 10.3k

Table 1. Mixed-Mode Switching Overheads (cycles)

User Cycles OS Cycles

Apache 59k 98k
OLTP 218k 52k
pgoltp 210k 35k
pmake 312k 47k

pgbench 554k 126k
Zeus 65k 220k

Table 2. Cycles Before Switching Modes for Single-OS

of the newly scheduled reliable VCPU, and synchronizing
the vocal and mute cores. The overhead of Leave DMR in-
cludes the cost of synchronizing, context switching out the
reliable VCPU, flushing the L2 cache, and context switching
in the newly scheduled VCPU running a high-performance
application. This overhead is much larger due to the cost of
flushing the L2 cache, which takes approximately 8k cycles
since we pessimistically assume that only one cache line can
be flushed or written back to the shared L3 per cycle.

Switching Frequency The cost of the mode transitions in
Table 1 is relatively small if these transitions occur infre-
quently, as is the expected case for a mixed-mode consol-
idated server using some hardware virtualization support
(e.g., [31]), or para-virtualized guests (e.g., [3]). However,

Mixed-mode switching overhead Cycles between kernel--user
mode switches

TU Dresden Mixed-Mode Multicore Reliability

SUMMARY

16

■ Multicore that supports mixed operation
of DMR and non-DMR applications

■ Improvements over standard DMR:

■ MMM-IPC: 34 - 48%

■ MMM-TP: 2.5 - 4x

■ Transparent (VCPUs, HW scheduler)

TU Dresden Mixed-Mode Multicore Reliability

DISCUSSION

17

■ How expensive is this in a microkernel-
based system?

■ Mostly evaluated for VM workloads

■ Estimates for mode transition costs high

■ How does it look without the hardware
scheduler / VCPU abstraction?

■ Energy … ? Figures … ?

