
WHY EVENTS ARE A BAD IDEA
Rob von Behren, Jeremy Condit, Eric Brewer

• threaded servers failed to scale up throughput

•event-based programming became popular

• threads are simpler and more natural

•downsides of threads due to poor implementations

• thread package + compiler support = right paradigm

THREADS

We propose a new design framework for highly concurrent server

applications, which we call the staged event-driven architecture

(SEDA).1 SEDA combines aspects of threads and event-based program-

ming models to manage the concurrency, I/O, scheduling, and resource

management needs of Internet services. In SEDA, applications are con-

structed as a network of stages, each with an associated incoming event

queue. Each stage represents a robust building block that may be indi-

vidually conditioned to load by thresholding or filtering its event queue.

In addition, making event queues explicit allows applications to make

informed scheduling and resource-management decisions, such as re-

ordering, filtering, or aggregation of requests. SEDA makes use of dy-

namic resource throttling to control the resource allocation and schedul-

ing of application components, allowing the system to adapt to overload

conditions.

This paper describes the design, architecture, and implementation

of a SEDA-based Internet services platform. This platform provides

efficient, scalable I/O interfaces as well as several resource control

mechanisms, including thread pool sizing and dynamic event schedul-

ing. We evaluate the framework through two applications — a high-

performance HTTP server and a packet router for the Gnutella peer-

to-peer file-sharing network. We present performance and scalability

results for these applications, demonstrating that SEDA achieves ro-

bustness over huge variations in load and outperforms other service

designs. Our Java-based SEDA HTTP server outperforms two popu-

lar Web servers implemented in C, as described in Section 5.1. We

argue that using SEDA, highly concurrent applications are easier to

build, more efficient, and more robust to load. With the right set of in-

terfaces, application designers can focus on application-specific logic,

rather than the details of concurrency and resource management.

2 Background and Related Work

SEDA draws together two important lines of research: the use of thread-

based concurrency models for ease of programming and event-based

models for extensive concurrency. This section develops the lineage of

this approach by outlining the key contributions and problems in the

steps leading to the SEDA design.

Intuitively, a service is well-conditioned if it behaves like a sim-

ple pipeline, where the depth of the pipeline is determined by the path

through the network and the processing stages within the service it-

self. As the offered load increases, the delivered throughput increases

proportionally until the pipeline is full and the throughput saturates; ad-

ditional load should not degrade throughput. Similarly, the response

time exhibited by the service is roughly constant at light load, because

it is dominated by the depth of the pipeline. As load approaches satura-

tion, the queueing delay dominates. In the closed-loop scenario typical

of many services, where each client waits for a response before deliv-

ering the next request, response time should increase linearly with the

number of clients.

The key property of a well-conditioned service is graceful degra-

dation: as offered load exceeds capacity, the service maintains high

throughput with a linear response-time penalty that impacts all clients

equally, or at least predictably according to some service-specific pol-

icy. Note that this is not the typical Web experience; rather, as load

increases, throughput decreases and response time increases dramati-

cally, creating the impression that the service has crashed.

2.1 Thread-based concurrency

The most commonly used design for server applications is the thread-

per-request model, as embodied in RPC packages [52], Java Remote

Method Invocation [54], and DCOM [37]. This model is well sup-

ported by modern languages and programming environments. In this

1Seda is also the Spanish word for silk.

dispatchernetwork
dispatch

request 1

request 2

request 3

request 4

request N

network
send result

Figure 1: Threaded server design: Each incoming request is dispatched to a

separate thread, which processes the request and returns a result to the client.

Edges represent control flow between components. Note that other I/O opera-

tions, such as disk access, are not shown here, but would be incorporated into

each threads’ request processing.

model, shown in Figure 1, each accepted request consumes a thread to

process it, with synchronization operations protecting shared resources.

The operating system overlaps computation and I/O by transparently

switching among threads.

Although relatively easy to program, the overheads associated with

threading — including cache and TLB misses, scheduling overhead,

and lock contention — can lead to serious performance degradation

when the number of threads is large. As a concrete example, Figure 2

shows the performance of a simple threaded server as the number of

threads increases. Although the effective thread limit would be large

for general-purpose timesharing, it is not adequate for the tremendous

concurrency requirements of an Internet service.

Threads and processes are primarily designed to support multipro-

gramming, and existing OSs strive to virtualize hardware resources in a

way that is transparent to applications. Applications are rarely given the

opportunity to participate in system-wide resource management deci-

sions, or given indication of resource availability in order to adapt their

behavior to changing conditions. Virtualization fundamentally hides

the fact that resources are limited and shared [61].

A number of systems have attempted to remedy this problem by

exposing more control to applications. Scheduler activations [5],

application-specific handlers [59], and operating systems such as

SPIN [11], Exokernel [28], and Nemesis [34] are all attempts to aug-

ment limited operating system interfaces by giving applications the

ability to specialize the policy decisions made by the kernel. However,

the design of these systems is still based on multiprogramming, as the

focus continues to be on safe and efficient resource virtualization, rather

than on graceful management and high concurrency.

2.2 Bounded thread pools

To avoid the overuse of threads, a number of systems adopt a coarse

form of load conditioning that serves to bound the size of the thread

pool associated with a service. When the number of requests in the

server exceeds some fixed limit, additional connections are not ac-

cepted. This approach is used by Web servers such as Apache [6],

IIS [38], and Netscape Enterprise Server [42], as well as application

servers such as BEA Weblogic [10] and IBMWebSphere [25]. By lim-

iting the number of concurrent threads, the server can avoid throughput

degradation, and the overall performance is more robust than the uncon-

strained thread-per-task model. However, this approach can introduce

a great deal of unfairness to clients: when all server threads are busy or

blocked, client requests queue up in the network for servicing. As we

will show in Section 5.1, this can cause clients to experience arbitrarily

large waiting times.

When each request is handled by a single thread, it is difficult to

0

5000

10000

15000

20000

25000

30000

1 4 16 64 256 1024
0

50

100

150

200

250

300

350

400

T
h
ro

u
g
h
p
u
t,
 t
a
s
k
s
/s

e
c

L
a
te

n
c
y
,
m

s
e
c

Number of threads

Throughput
Latency

Linear (ideal) latency

Figure 2: Threaded server throughput degradation: This benchmark mea-

sures a simple threaded server which creates a single thread for each task in the

pipeline. After receiving a task, each thread performs an 8 KB read from a disk

file; all threads read from the same file, so the data is always in the buffer cache.

Threads are pre-allocated in the server to eliminate thread startup overhead

from the measurements, and tasks are generated internally to negate network

effects. The server is implemented in C and is running on a 4-way 500 MHz

Pentium III with 2 GB of memory under Linux 2.2.14. As the number of con-

current tasks increases, throughput increases until the number of threads grows

large, after which throughput degrades substantially. Response time becomes

unbounded as task queue lengths increase; for comparison, we have shown the

ideal linear response time curve (note the log scale on the x axis).

identify internal performance bottlenecks in order to perform tuning

and load conditioning. Consider a simple threaded Web server in which

some requests are inexpensive to process (e.g., cached static pages) and

others are expensive (e.g., large pages not in the cache). With many

concurrent requests, it is likely that the expensive requests could be the

source of a performance bottleneck, for which it is desirable to perform

load shedding. However, the server is unable to inspect the internal

request stream to implement such a policy; all it knows is that the thread

pool is saturated, and must arbitrarily reject work without knowledge of

the source of the bottleneck.

Resource containers [7] and the concept of paths from the Scout op-

erating system [41, 49] are two techniques that can be used to bound

the resource usage of tasks in a server. These mechanisms apply ver-

tical resource management to a set of software modules, allowing the

resources for an entire data flow through the system to be managed as a

unit. In the case of the bottleneck described above, limiting the resource

usage of a given request would avoid degradation due to cache misses,

but allow cache hits to proceed unabated.

2.3 Event-driven concurrency

The scalability limits of threads have led many developers to eschew

them almost entirely and employ an event-driven approach to manag-

ing concurrency. In this approach, shown in Figure 3, a server consists

of a small number of threads (typically one per CPU) that loop continu-

ously, processing events of different types from a queue. Events may be

generated by the operating system or internally by the application, and

generally correspond to network and disk I/O readiness and completion

notifications, timers, or other application-specific events. The event-

driven approach implements the processing of each task as a finite state

machine, where transitions between states in the FSM are triggered by

events. In this way the server maintains its own continuation state for

each task rather than relying upon a thread context.

The event-driven design is used by a number of systems, including

scheduler

network

disk

request FSM 1

request FSM 2

request FSM 3

request FSM 4

request FSM N

Figure 3: Event-driven server design: This figure shows the flow of events

through an event-driven server. The main thread processes incoming events from

the network, disk, and other sources, and uses these to drive the execution of

many finite state machines. Each FSM represents a single request or flow of

execution through the system. The key source of complexity in this design is the

event scheduler, which must control the execution of each FSM.

the Flash [44], thttpd [4], Zeus [63], and JAWS [24] Web servers, and

the Harvest [12] Web cache. In Flash, each component of the server

responds to particular types of events, such as socket connections or

filesystem accesses. The main server process is responsible for contin-

ually dispatching events to each of these components, which are imple-

mented as library calls. Because certain I/O operations (in this case,

filesystem access) do not have asynchronous interfaces, the main server

process handles these events by dispatching them to helper processes

via IPC. Helper processes issue (blocking) I/O requests and return an

event to the main process upon completion. Harvest’s structure is very

similar: it is single-threaded and event-driven, with the exception of the

FTP protocol, which is implemented by a separate process.

The tradeoffs between threaded and event-driven concurrency mod-

els have been studied extensively in the JAWS Web server [23, 24].

JAWS provides a framework for Web server construction allowing the

concurrency model, protocol processing code, cached filesystem, and

other components to be customized. Like SEDA, JAWS emphasizes

the importance of adaptivity in service design, by facilitating both static

and dynamic adaptations in the service framework. To our knowledge,

JAWS has only been evaluated under light loads (less than 50 concur-

rent clients) and has not addressed the use of adaptivity for conditioning

under heavy load.

Event-driven systems tend to be robust to load, with little degrada-

tion in throughput as offered load increases beyond saturation. Figure 4

shows the throughput achieved with an event-driven implementation of

the service from Figure 2. As the number of tasks increases, the server

throughput increases until the pipeline fills and the bottleneck (the CPU

in this case) becomes saturated. If the number of tasks in the pipeline is

increased further, excess tasks are absorbed in the server’s event queue.

The throughput remains constant across a huge range in load, with the

latency of each task increasing linearly.

An important limitation of this model is that it assumes that event-

handling threads do not block, and for this reason nonblocking I/O

mechanisms must be employed. Although much prior work has in-

vestigated scalable I/O primitives [8, 9, 33, 46, 48], event-processing

threads can block regardless of the I/O mechanisms used, due to inter-

rupts, page faults, or garbage collection.

Event-driven design raises a number of additional challenges for the

application developer. Scheduling and ordering of events is probably

the most important concern: the application is responsible for deciding

when to process each incoming event and in what order to process the

FSMs for multiple flows. In order to balance fairness with low response

time, the application must carefully multiplex the execution of multiple

EVENTS

0

5000

10000

15000

20000

25000

30000

1 4 16 64 256 1024
0

50

100

150

200

250

300

350

400

T
h

ro
u

g
h

p
u

t,
 t

a
s
k
s
/s

e
c

L
a

te
n

c
y
,

m
s
e

c

Number of threads

Throughput
Latency

Linear (ideal) latency

Figure 2: Threaded server throughput degradation: This benchmark mea-

sures a simple threaded server which creates a single thread for each task in the

pipeline. After receiving a task, each thread performs an 8 KB read from a disk

file; all threads read from the same file, so the data is always in the buffer cache.

Threads are pre-allocated in the server to eliminate thread startup overhead

from the measurements, and tasks are generated internally to negate network

effects. The server is implemented in C and is running on a 4-way 500 MHz

Pentium III with 2 GB of memory under Linux 2.2.14. As the number of con-

current tasks increases, throughput increases until the number of threads grows

large, after which throughput degrades substantially. Response time becomes

unbounded as task queue lengths increase; for comparison, we have shown the

ideal linear response time curve (note the log scale on the x axis).

identify internal performance bottlenecks in order to perform tuning

and load conditioning. Consider a simple threaded Web server in which

some requests are inexpensive to process (e.g., cached static pages) and

others are expensive (e.g., large pages not in the cache). With many

concurrent requests, it is likely that the expensive requests could be the

source of a performance bottleneck, for which it is desirable to perform

load shedding. However, the server is unable to inspect the internal

request stream to implement such a policy; all it knows is that the thread

pool is saturated, and must arbitrarily reject work without knowledge of

the source of the bottleneck.

Resource containers [7] and the concept of paths from the Scout op-

erating system [41, 49] are two techniques that can be used to bound

the resource usage of tasks in a server. These mechanisms apply ver-

tical resource management to a set of software modules, allowing the

resources for an entire data flow through the system to be managed as a

unit. In the case of the bottleneck described above, limiting the resource

usage of a given request would avoid degradation due to cache misses,

but allow cache hits to proceed unabated.

2.3 Event-driven concurrency

The scalability limits of threads have led many developers to eschew

them almost entirely and employ an event-driven approach to manag-

ing concurrency. In this approach, shown in Figure 3, a server consists

of a small number of threads (typically one per CPU) that loop continu-

ously, processing events of different types from a queue. Events may be

generated by the operating system or internally by the application, and

generally correspond to network and disk I/O readiness and completion

notifications, timers, or other application-specific events. The event-

driven approach implements the processing of each task as a finite state

machine, where transitions between states in the FSM are triggered by

events. In this way the server maintains its own continuation state for

each task rather than relying upon a thread context.

The event-driven design is used by a number of systems, including

scheduler

network

disk

request FSM 1

request FSM 2

request FSM 3

request FSM 4

request FSM N

Figure 3: Event-driven server design: This figure shows the flow of events

through an event-driven server. The main thread processes incoming events from

the network, disk, and other sources, and uses these to drive the execution of

many finite state machines. Each FSM represents a single request or flow of

execution through the system. The key source of complexity in this design is the

event scheduler, which must control the execution of each FSM.

the Flash [44], thttpd [4], Zeus [63], and JAWS [24] Web servers, and

the Harvest [12] Web cache. In Flash, each component of the server

responds to particular types of events, such as socket connections or

filesystem accesses. The main server process is responsible for contin-

ually dispatching events to each of these components, which are imple-

mented as library calls. Because certain I/O operations (in this case,

filesystem access) do not have asynchronous interfaces, the main server

process handles these events by dispatching them to helper processes

via IPC. Helper processes issue (blocking) I/O requests and return an

event to the main process upon completion. Harvest’s structure is very

similar: it is single-threaded and event-driven, with the exception of the

FTP protocol, which is implemented by a separate process.

The tradeoffs between threaded and event-driven concurrency mod-

els have been studied extensively in the JAWS Web server [23, 24].

JAWS provides a framework for Web server construction allowing the

concurrency model, protocol processing code, cached filesystem, and

other components to be customized. Like SEDA, JAWS emphasizes

the importance of adaptivity in service design, by facilitating both static

and dynamic adaptations in the service framework. To our knowledge,

JAWS has only been evaluated under light loads (less than 50 concur-

rent clients) and has not addressed the use of adaptivity for conditioning

under heavy load.

Event-driven systems tend to be robust to load, with little degrada-

tion in throughput as offered load increases beyond saturation. Figure 4

shows the throughput achieved with an event-driven implementation of

the service from Figure 2. As the number of tasks increases, the server

throughput increases until the pipeline fills and the bottleneck (the CPU

in this case) becomes saturated. If the number of tasks in the pipeline is

increased further, excess tasks are absorbed in the server’s event queue.

The throughput remains constant across a huge range in load, with the

latency of each task increasing linearly.

An important limitation of this model is that it assumes that event-

handling threads do not block, and for this reason nonblocking I/O

mechanisms must be employed. Although much prior work has in-

vestigated scalable I/O primitives [8, 9, 33, 46, 48], event-processing

threads can block regardless of the I/O mechanisms used, due to inter-

rupts, page faults, or garbage collection.

Event-driven design raises a number of additional challenges for the

application developer. Scheduling and ordering of events is probably

the most important concern: the application is responsible for deciding

when to process each incoming event and in what order to process the

FSMs for multiple flows. In order to balance fairness with low response

time, the application must carefully multiplex the execution of multiple

0

5000

10000

15000

20000

25000

30000

35000

1 32 1024 32768 1048576
0

10000

20000

30000

40000

T
h
ro

u
g
h
p
u
t,
 t
a
s
k
s
/s

e
c

L
a
te

n
c
y
,
m

s
e
c

Number of tasks in pipeline

Throughput
Latency

Linear (ideal) latency

Figure 4: Event-driven server throughput: This benchmark measures an

event-driven version of the server from Figure 2. In this case, the server uses

a single thread to process tasks, where each task reads 8 KB from a single disk

file. Although the filesystem interface provided by the operating system used

here (Linux 2.2.14) is blocking, because the disk data is always in the cache, this

benchmark estimates the best possible performance from a nonblocking disk I/O

layer. As the figure shows, throughput remains constant as the load is increased

to a very large number of tasks (note the change in the horizontal axis scale from

Figure 2), and response time is linear (note the log scale on the x axis).

FSMs. The choice of an event scheduling algorithm is often tailored

to the specific application, and introduction of new functionality may

require the algorithm to be redesigned. Also, modularity is difficult

to achieve, as the code implementing each state must be trusted not to

block or consume a large number of resources that can stall the event-

handling thread.

2.4 Structured event queues

Several variants on the standard event-driven design have been pro-

posed to counter the problems outlined above. A common aspect of

these designs is to structure an event-driven application using a set of

event queues to improve code modularity and simplify application de-

sign.

The Click modular packet router [40] is one such example. In Click,

packet processing stages are implemented by separate code modules

with their own private state. Click is optimized to improve per-packet

latency through the router, allowing a single thread to call directly

through multiple packet-processing stages. This design is targeted at

a specific application (routing) and a single thread services all event

queues. Click makes the assumption that modules have bounded pro-

cessing times, leading to a relatively static resource-management poli-

cies. Qie et al. [47] also describe techniques for scheduling and load

conditioning in a software-based router; like SEDA, their design makes

use of controllers to adjust runtime parameters dynamically based on

load.

Gribble’s Distributed Data Structures (DDS) [20] layer also makes

use of a structured event-processing framework. In DDS, storage

servers emulate asynchronous network and disk I/O interfaces by mak-

ing use of fixed-size thread pools, and software components are com-

posed using either explicit event queues or implicit upcalls. Work

Crews [56] and the TSS/360 queue scanner [35] are other examples of

systems that make use of structured event queues and limited numbers

of threads to manage concurrency. In each of these systems, the use

of an event queue decouples the execution of two components, which

improves modularity and robustness.

StagedServer [31] is another system that makes use of modules com-

municating using explicit event queues. In this case, the goal is to

maximize processor cache locality by carefully scheduling threads and

events within each module. By aggregating the execution of multiple

similar events within a queue, locality is enhanced, leading to greater

performance.

Lauer and Needham’s classic paper [32] discusses the merits of pro-

cesses communicating via messages and contrasts this approach to that

of “procedures,” closely related to the threaded model described above.

SEDA can be seen as an instance of the message-oriented model dis-

cussed there. The authors claim that the message-based and procedure-

based models are duals of each other, and that any program imple-

mented in one model can just as efficiently be implemented in the other.

While we agree with this basic sentiment, this argument overlooks the

complexity of building scalable general-purpose multithreading, as well

as the inherent difficulties of adapting to load in a thread-based model,

without an explicit request queue.

3 The Staged Event-Driven Architecture

In this section we propose a new software architecture, the staged event-

driven architecture (SEDA), which is designed to enable high concur-

rency, load conditioning, and ease of engineering for Internet services.

SEDA decomposes an application into a network of stages separated

by event queues and introduces the notion of dynamic resource con-

trollers to allow applications to adjust dynamically to changing load.

An overview of the SEDA approach to service design is shown in Fig-

ure 5.

3.1 Goals

The primary goals for SEDA are as follows:

Support massive concurrency: To avoid performance degradation

due to threads, SEDA makes use of event-driven execution wherever

possible. This also requires that the system provide efficient and scal-

able I/O primitives.

Simplify the construction of well-conditioned services: To reduce

the complexity of building Internet services, SEDA shields application

programmers from many of the details of scheduling and resource man-

agement. The design also supports modular construction of these appli-

cations, and provides support for debugging and performance profiling.

Enable introspection: Applications should be able to analyze the re-

quest stream to adapt behavior to changing load conditions. For exam-

ple, the system should be able to prioritize and filter requests to support

degraded service under heavy load.

Support self-tuning resource management: Rather than mandate

a priori knowledge of application resource requirements and client load

characteristics, the system should adjust its resource management pa-

rameters dynamically to meet performance targets. For example, the

number of threads allocated to a stage can be determined automatically

based on perceived concurrency demands, rather than hard-coded by

the programmer or administrator.

3.2 Stages as robust building blocks

The fundamental unit of processing within SEDA is the stage. A stage

is a self-contained application component consisting of an event han-

dler, an incoming event queue, and a thread pool, as depicted in Fig-

ure 6. Each stage is managed by a controller that affects scheduling

and thread allocation, as described below. Stage threads operate by

pulling a batch of events off of the incoming event queue and invok-

ing the application-supplied event handler. The event handler processes

each batch of events, and dispatches zero or more events by enqueuing

them on the event queues of other stages.

DUALITY

Events Threads

event handlers monitors

events accepted by handler functions exported by module

SendMessage / AwaitReply procedure call, or fork/join

SendReply return from procedure

waiting for messages waiting on condition variables

NON-PROBLEMS

Problem Solution

performance optimized user-level threading

restrictive control flow complicated patterns not used

expensive synchronisation cooperative threads

inefficient state management stack-shrinking compiler

uninformed scheduling magic?

AGAINST EVENTS

• events obfuscate control flow

• cluttered exception handling and state lifetime

• event-driven systems fall back to threads for complex parts

• fixing problems of events is worse than using threads

EVALUATION

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 23

Concurrent Clients

M
b
it

s
/

se
co

n
d

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 16 64 256 1024 4096 16384 65536

Haboob

Knot!C (favor connections)

Knot!A (favor accept)

Figure 3: Web server bandwidth versus the number of
simultaneous clients. We were unable to run the benchmark for
Haboob with more than 16384 clients, as Haboob ran out of
memory.

UNIX poll() system call, whereas asynchronous
disk I/O is provided by a thread pool that performs
blocking I/O operations. The library also overrides
blocking system calls and provides a simple emulation
of pthreads, which allows applications written for our
library to compile unmodified with standard pthreads.

With this thread package we wrote a 700-line test web
server, Knot. Knot accepts static data requests, allows
persistent connections, and includes a basic page cache.
The code is written in a clear, straightforward threaded
style and required very little performance tuning.

We compared the performance of Knot to that of
SEDA’s event-driven web server, Haboob, using the test
suite used to evaluate SEDA [17]. The /dev/poll

patch used for the original Haboob tests has been
deprecated, so our tests of Haboob used standard UNIX
poll() (as does Knot). The test machine was a 2x2000
MHz Xeon SMP with 1 GB of RAM running Linux
2.4.20. The test uses a small workload, so there is little
disk activity. We ran Haboob with the 1.4 JVM from
IBM, with the JIT enabled. Figure 3 presents the results.

We tested two different scheduling policies for Knot,
one that favors processing of active connections over
accepting new ones (Knot-C in the figure) and one that
does the reverse (Knot-A). The first policy provides a
natural throttling mechanism by limiting the number
of new connections when the server is saturated with
requests. The second policy was designed to create
higher internal concurrency, and it more closely matches
the policy used by Haboob.

Figure 3 shows that Knot and Haboob have the same
general performance pattern. Initially, there is a linear
increase in bandwidth as the number of simultaneous
connections increases; when the server is saturated, the
bandwidth levels out. The performance degradation for

both Knot-A and Haboob is due to the poor scalability
of poll(). Using the newer sys epoll system call
with Knot avoids this problem and achieves excellent
scalability. However, we have used the poll() result
for comparison, since sys epoll is incompatible with
Haboob’s socket library. This result shows that a well-
designed thread package can achieve the same scaling
behavior as a well-designed event system.

The steady-state bandwidth achieved by Knot-C is
nearly 700 Mbit/s. At this rate, the server is apparently
limited by interrupt processing overhead in the kernel.
We believe the performance spike around 1024 clients is
due to lower interrupt overhead when fewer connections
to the server are being created.

Haboob’s maximum bandwidth of 500 Mbit/s is sig-
nificantly lower than Knot’s, because Haboob becomes
CPU limited at 512 clients. There are several possible
reasons for this result. First, Haboob’s thread-pool-
per-handler model requires context switches whenever
events pass from one handler to another. This require-
ment causes Haboob to context switch 30,000 times
per second when fully loaded—more than 6 times as
frequently as Knot. Second, the proliferation of small
modules in Haboob and SEDA (a natural outgrowth of
the event programming model) creates a large number of
module crossings and queuing operations. Third, Haboob
creates many temporary objects and relies heavily on
garbage collection. These challenges seem deeply tied
to the event model; the simpler threaded style of Knot
avoids these problems and allows for more efficient
execution. Finally, event systems require various forms
of run-time dispatch, since the next event handler to
execute is not known statically. This problem is related
to the problem of ambiguous control flow, which affects
performance by reducing opportunities for compiler
optimizations and by increasing CPU pipeline stalls.

6 Related Work

Ousterhout [11] made the most well-known case in
favor of events, but his arguments do not conflict with
ours. He argues that programming with concurrency
is fundamentally difficult, and he concludes that co-
operatively scheduled events are preferable (for most
purposes) because they allow programmers to avoid
concurrent code in most cases. He explicitly supports
the use of threads for true concurrency, which is the
case in our target space. We also agree that cooperative
scheduling helps to simplify concurrency, but we argue
that this tool is better used in the context of the simpler
programming model of threads.

Adya et al. [1] cover a subset of these issues better
than we have. They identify the value of cooperative
scheduling for threads, and they define the term “stack
ripping” for management of live state. Our work expands

NON-PROBLEMS

Problem Solution

performance optimized user-level threading

restrictive control flow complicated patterns not used

expensive synchronisation cooperative threads

inefficient state management stack-shrinking compiler

uninformed scheduling magic?

SPECTRUM

Threads
 Events

DISCUSSION

• events obfuscate control flow: Should you worry?

• state lifetime: garbage collection

• compilers can help event systems: closures

• Fixing problems with threads turns them into events?

• Are desktop apps like servers? Or do they exhibit the
complicated fan-in/fan-out patters the authors dismiss?

