
Department of Computer Science Institute of System Architecture, Operating Systems Group

CARSTEN WEINHOLD

MEMBRANE: OPERATING SYSTEM
SUPPORT FOR RESTARTABLE FILE
SYSTEMS
SWAMINATHAN SUNDARARAMAN, SRIRAM SUBRAMANIAN, ABHISHEK
RAJIMWALE, ANDREA C. ARPACI-DUSSEAU, REMZI H. ARPACI-DUSSEAU,
MICHAEL M. SWIFT

TU Dresden Membrane: Operating Support for Restartable File Systems

MOTIVATION
■ „Operating Systems crash.“

■ „File systems fail.“

■ Many bugs are in file systems

■ Reasons:

■ Complex code bases

■ Under active development

■ Large number of file systems

■ How to fix?

2

TU Dresden Membrane: Operating Support for Restartable File Systems

HOW TO RECOVER?
■ Research on OS subsystem recovery:

■ Isolation, micro-rebooting

■ Checkpoint / restart

■ Problem: file systems are stateful

■ On-disk data

■ In-memory data

■ Spread across kernel / user memory
3

TU Dresden Membrane: Operating Support for Restartable File Systems

SOLUTIONS

4

Heavyweight Lightweight

Nooks/Shadow[31, 32]∗ SafeDrive[40]∗

Stateless Xen[10], Minix[13, 14] Singularity[19]

L4[20], Nexus[37]

Stateful
CuriOS[7]

Membrane∗
EROS[29]

Table 1: Summary of Approaches. The table performs

a categorization of previous approaches that handle OS subsys-

tem crashes. Approaches that use address spaces or full-system

checkpoint/restart are too heavyweight; other language-based

approaches may be lighter weight in nature but do not solve the

stateful recovery problem as required by file systems. Finally,

the table marks (with an asterisk) those systems that integrate

well into existing operating systems, and thus do not require the

widespread adoption of a new operating system or virtual ma-

chine to be successful in practice.

(i.e., address-space boundaries between servers) with an

additional twist: instead of storing session state inside a

service, it places such state in an additional protection do-

main where it can remain safe from a buggy service. How-

ever, the added protection is expensive. Frequent kernel

crossings, as would be common for file systems in data-

intensive environments, would dominate performance.

As far as we can discern, CuriOS represents one of the

few systems that attempt to provide failure resilience for

more stateful services such as file systems; other heavy-

weight checkpoint/restart systems also share this prop-

erty [29]. In the paper there is a brief description of an

“ext2 implementation”; unfortunately it is difficult to un-

derstand exactly how sophisticated this file service is or

how much work is required to recover from failures. It

also seems that there is little shared state as is common in

modern systems (e.g., pages in a page cache).

2.4 Summary
We now classify these systems along the two axes of over-

head and statefulness, as shown in Table 1. From the table,

we can see that many systems use methods that are simply

too costly for file systems; placing address-space bound-

aries between the OS and the file system greatly increases

the amount of data copying (or page remapping) that must

occur and thus is untenable. We can also see that fewer

lightweight techniques have been developed. Of those,

we know of none that work for stateful subsystems such

as file systems. Thus, there is a need for a lightweight,

transparent, and stateful approach to fault recovery.

3 Design
Membrane is designed to transparently restart the affected

file system upon a crash, while applications and the rest of

the OS continue to operate normally. A primary challenge

in restarting file systems is to correctly manage the state

associated with the file system (e.g., file descriptors, locks

in the kernel, and in-memory inodes and directories).

In this section, we first outline the high-level goals for

our system. Then, we discuss the nature and types of

faults Membrane will be able to detect and recover from.

Finally, we present the three major pieces of the Mem-

brane system: fault detection, fault anticipation, and re-

covery.

3.1 Goals
We believe there are five major goals for a system that

supports restartable file systems.

Fault Tolerant: A large range of faults can occur in

file systems. Failures can be caused by faulty hardware

and buggy software, can be permanent or transient, and

can corrupt data arbitrarily or be fail-stop. The ideal

restartable file system recovers from all possible faults.

Lightweight: Performance is important to most users and

most file systems have had their performance tuned over

many years. Thus, adding significant overhead is not a vi-

able alternative: a restartable file system will only be used

if it has comparable performance to existing file systems.

Transparent: We do not expect application developers

to be willing to rewrite or recompile applications for this

environment. We assume that it is difficult for most appli-

cations to handle unexpected failures in the file system.

Therefore, the restartable environment should be com-

pletely transparent to applications; applications should

not be able to discern that a file-system has crashed.

Generic: A large number of commodity file systems exist

and each has its own strengths and weaknesses. Ideally,

the infrastructure should enable any file system to bemade

restartable with little or no changes.

Maintain File-System Consistency: File systems pro-

vide different crash consistency guarantees and users typ-

ically choose their file system depending on their require-

ments. Therefore, the restartable environment should not

change the existing crash consistency guarantees.

Many of these goals are at odds with one another. For

example, higher levels of fault resilience can be achieved

with heavier-weight fault-detection mechanisms. Thus

in designing Membrane, we explicitly make the choice

to favor performance, transparency, and generality over

the ability to handle a wider range of faults. We believe

that heavyweight machinery to detect and recover from

relatively-rare faults is not acceptable. Finally, although

Membrane should be as generic a framework as possible,

a few file system modifications can be tolerated.

3.2 Fault Model
Membrane’s recovery does not attempt to handle all types

of faults. Like most work in subsystem fault detection and

recovery, Membrane best handles failures that are tran-

sient and fail-stop [26, 32, 40].

Deterministic faults, such as memory corruption, are

challenging to recover from without altering file-system

3

TU Dresden Membrane: Operating Support for Restartable File Systems

MEMBRANE
■ Membrane is OS framework:

■ Light-weight stateful recovery

■ Checkpointing on-disk state

■ Logging of operations

■ In case of failure:

■ Park all file system operations

■ Cleanup state, reset file system

■ Replay logged operations from checkpoint

■ Continue
5

TU Dresden Membrane: Operating Support for Restartable File Systems

OVERVIEW

6

code. We assume that testing and other standard code-

hardening techniques have eliminated most of these bugs.

Faults such as a bug that is triggered on a given input se-

quence could be handled by failing the particular request.

Currently, we return an error (-EIO) to the requests trig-

gering such deterministic faults, thus preventing the same

fault from being triggered again and again during recov-

ery. Transient faults, on the other hand, are caused by race

conditions and other environmental factors [33]. Thus,

our aim is to mainly cope with transient faults, which can

be cured with recovery and restart.

We feel that many faults and bugs can be caught with

lightweight hardware and software checks. Other solu-

tions, such as extremely large address spaces [17], could

help reduce the chances of wild writes causing harm by

hiding kernel objects (“needles”) in a much larger ad-

dressable region (“the haystack”).

Recovering a stateful file system with lightweight

mechanisms is especially challenging when faults are not

fail-stop. For example, consider buggy file-system code

that attempts to overwrite important kernel data structures.

If there is a heavyweight address-space boundary between

the file system and kernel proper, then such a stray write

can be detected immediately; in effect, the fault becomes

fail-stop. If, in contrast, there is no machinery to detect

stray writes, the fault can cause further silent damage to

the rest of the kernel before causing a detectable fault; in

such a case, it may be difficult to recover from the fault.

We strongly believe that once a fault is detected in the

file system, no aspect of the file system should be trusted:

no more code should be run in the file system and its in-

memory data structures should not be used.

The major drawback of our approach is that the bound-

ary we use is soft: some file system bugs can still cor-

rupt kernel state outside the file system and recovery will

not succeed. However, this possibility exists even in sys-

tems with hardware boundaries: data is still passed across

boundaries, and no matter how many integrity checks one

makes, it is possible that bad data is passed across the

boundary and causes problems on the other side.

3.3 Overview

The main design challenge for Membrane is to recover

file-system state in a lightweight, transparent fashion. At

a high level, Membrane achieves this goal as follows.

Once a fault has been detected in the file system, Mem-

brane rolls back the state of the file system to a point in

the past that it trusts: this trusted point is a consistent file-

system image that was checkpointed to disk. This check-

point serves to divide file-system operations into distinct

epochs; no file-system operation spans multiple epochs.

To bring the file system up to date, Membrane re-

plays the file-system operations that occurred after the

checkpoint. In order to correctly interpret some opera-

Figure 1: Membrane Overview. The figure shows a file

being created and written to on top of a restartable file sys-

tem. Halfway through, Membrane creates a checkpoint. After

the checkpoint, the application continues to write to the file;

the first succeeds (and returns success to the application) and

the program issues another write, which leads to a file system

crash. For Membrane to operate correctly, it must (1) unwind

the currently-executing write and park the calling thread, (2)

clean up file system objects (not shown), restore state from the

previous checkpoint, and (3) replay the activity from the current

epoch (i.e., write w1). Once file-system state is restored from

the checkpoint and session state is restored, Membrane can (4)

unpark the unwound calling thread and let it reissue the write,

which (hopefully) will succeed this time. The application should

thus remain unaware, only perhaps noticing the timing of the

third write (w2) was a little slow.

tions, Membrane must also remember small amounts of

application-visible state from before the checkpoint, such

as file descriptors. Since the purpose of this replay is only

to update file-system state, non-updating operations such

as reads do not need to be replayed.

Finally, to clean up the parts of the kernel that the buggy

file system interacted with in the past, Membrane releases

the kernel locks and frees memory the file system allo-

cated. All of these steps are transparent to applications

and require no changes to file-system code. Applications

and the rest of the OS are unaffected by the fault. Figure 1

gives an example of howMembrane works during normal

file-system operation and upon a file system crash.

Thus, there are three major pieces in the Membrane de-

sign. First, fault detection machinery enables Membrane

to detect faults quickly. Second, fault anticipationmecha-

nisms record information about current file-system opera-

tions and partition operations into distinct epochs. Finally,

the fault recovery subsystem executes the recovery proto-

col to clean up and restart the failed file system.

3.4 Fault Detection

The main aim of fault detection within Membrane is to

be lightweight while catching as many faults as possible.

Membrane uses both hardware and software techniques to

catch faults. The hardware support is simple: null point-

ers, divide-by-zero, and many other exceptions are caught

by the hardware and routed to the Membrane recovery

subsystem. More expensive hardware machinery, such as

4

TU Dresden Membrane: Operating Support for Restartable File Systems

GOALS

■ Fault tolerant

■ Lightweight

■ Transparent

■ Generic

■ Maintain file-system consistency

7

TU Dresden Membrane: Operating Support for Restartable File Systems

FAULT DETECTION

■ Aims at transient fail-stop errors

■ Light-weight detection:

■ Exceptions (divide-by-zero, page fault, ...)

■ assert(), panic(), BUG(), ...

■ Argument checks at kernel / file system
boundaries

■ No address-space isolation, etc.

8

TU Dresden Membrane: Operating Support for Restartable File Systems

CLEAN STATE
■ Recovery requires clean on-disk state

■ Based on checkpointing

■ Checkpoints mark begin / end of epochs

9

In
 M

e
m

o
ry

O
n

 D
is

k

Epoch 0 Epoch 1

Write A to Block 0
(time=0)

A (dirty)

[block 0, epoch 0]

Checkpoint
(time=1)

A (dirty,COW)

[block 0, epoch 0]

Write B to Block 0
(time=2)

A (dirty, COW)

[block 0, epoch 0]

B (dirty)

[block 0, epoch 1]

I/O Flush
(time=3)

B (dirty)

[block 0, epoch 1]

A

Figure 3: COW-based Checkpointing. The picture shows
what happens during COW-based checkpointing. At time=0, an

application writes to block 0 of a file and fills it with the contents

“A”. At time=1, Membrane performs a checkpoint, which simply

marks the block copy-on-write. Thus, Epoch 0 is over and a new

epoch begins. At time=2, block 0 is over-written with the new

contents “B”; the system catches this overwrite with the COW

machinery and makes a new in-memory page for it. At time=3,

Membrane decides to flush the previous epoch’s dirty pages to

disk, and thus commits block 0 (with “A” in it) to disk.

update traffic is bunched together and must happen dur-

ing the checkpoint, instead of being spread out over time;

as is well known, this can reduce I/O performance [23].

Our lightweight checkpointing solution instead takes

advantage of the page-table support provided by mod-

ern hardware to partition pages into different epochs.

Specifically, by using the protection features provided by

the page table, the CPM implements a copy-on-write-

based checkpoint to partition pages into different epochs.

This COW-based checkpoint is simply a lightweight way

for Membrane to partition updates to disk into different

epochs. Figure 3 shows an example on how COW-based

checkpointing works.

We now present the details of the checkpoint imple-

mentation. First, at the time of a checkpoint, the check-

point manager (CPM) thread wakes and indicates to the

session manager (SM) that it intends to checkpoint. The

SM parks new VFS operations and waits for in-flight op-

erations to complete; when finished, the SM wakes the

CPM so that it can proceed.

The CPM then walks the lists of dirty objects in the

file system, starting at the superblock, and finds the dirty

pages of the file system. The CPM marks these kernel

pages copy-on-write; further updates to such a page will

induce a copy-on-write fault and thus direct subsequent

writes to a new copy of the page. Note that the copy-on-

write machinery is present in many systems, to support

(among other things) fast address-space copying during

process creation. This machinery is either implemented

within a particular subsystem (e.g., file systems such as

ext3cow [24], WAFL [15] manually create and track their

COW pages) or inbuilt in the kernel for application pages.

To our knowledge, copy-on-write machinery is not avail-

able for kernel pages. Hence, we explicitly added support

for copy-on-write machinery for kernel pages in Mem-

brane; thereby avoiding extensive changes to file systems

to support COW machinery.

The CPM then allows these pages to be written to disk

(by tracking a checkpoint number associated with the

page), and the background I/O daemon (pdflush) is free

to write COW pages to disk at its leisure during the next

epoch. Checkpointing thus groups the dirty pages from

the previous epoch and allows only said modifications to

be written to disk during the next epoch; newly dirtied

pages are held in memory until the complete flush of the

previous epoch’s dirty pages.

There are a number of different policies that can be

used to decide when to checkpoint. An ideal policy would

likely consider a number of factors, including the time

since last checkpoint (to minimize recovery time), the

number of dirty blocks (to keep memory pressure low),

and current levels of CPU and I/O utilization (to perform

checkpointing during relatively-idle times). Our current

policy is simpler, and just uses time (5 secs) and a dirty-

block threshold (40MB) to decide when to checkpoint.

Checkpoints are also initiated when an application forces

data to disk.

4.4 Fault Recovery

We now describe the last piece of our implementation

which performs fault recovery. Most of the protocol is

implemented by the recovery manager (RM), which runs

as a separate thread. The most intricate part of recovery

is howMembrane gains control of threads after a fault oc-

curs in the file system and the unwind protocol that takes

place as a result. We describe this component of recovery

first.

4.4.1 Gaining Control with Control-Flow Capture

The first problem encountered by recovery is how to gain

control of threads already executing within the file sys-

tem. The fault that occurred (in a given thread) may have

left the file system in a corrupt or unusable state; thus, we

would like to stop all other threads executing in the file

system as quickly as possible to avoid any further execu-

tion within the now-untrusted file system.

Membrane, through the RM, achieves this goal by im-

mediately marking all code pages of the file system as

non-executable and thus ensnaring other threads with a

technique that we refer as control-flow capture. When a

thread that is already within the file system next executes

an instruction, a trap is generated by the hardware; Mem-

brane handles the trap and then takes appropriate action

to unwind the execution of the thread so that recovery

can proceed after all these threads have been unwound.

File systems in Membrane are inserted as loadable ker-

nel modules, this ensures that the file system code is in

a 4KB page and not part of a large kernel page which

9

TU Dresden Membrane: Operating Support for Restartable File Systems

CHECKPOINTING
■ Reuse existing mechanisms:

■ Journaling support, snapshots, ...

■ Notify Membrane of begin / end of transaction

■ Generic checkpointing at VFS level:

■ Park new file system operations

■ Wait for pending operations to complete

■ Copy dirty metadata back to buffers

■ Mark dirty buffers copy-on-write

■ Write back asynchronously
10

TU Dresden Membrane: Operating Support for Restartable File Systems

LOGS
■ operation log: operations and data

■ session log: open files from previous
epoch, file pointers, ...

■ malloc table: all memory allocated by file
system

■ lock stack: all held global locks for LIFO
releasing

■ unwind stack: register state to support
unwinding

11

TU Dresden Membrane: Operating Support for Restartable File Systems

RECOVERY
■ Halt execution and park threads

■ Unwind in-flight threads

■ Commit dirty pages from last epoch to
stable storage

■ Kill file system („unmount“)

■ Restart file system („mount“)

■ Roll forward logged operations / state

■ Resume execution
12

TU Dresden Membrane: Operating Support for Restartable File Systems

SKIP/TRUST

13

could potentially be shared among different kernel mod-

ules. Hence, it is straightforward to transparently identify

code pages of file systems.

4.4.2 Intertwined Execution and

The Skip/Trust Unwind Protocol

Unfortunately, unwinding a thread is challenging, as the

file system interacts with the kernel in a tightly-coupled

fashion. Thus, it is not uncommon for the file system to

call into the kernel, which in turn calls into the file system,

and so forth. We call such execution paths intertwined.

Intertwined code puts Membrane into a difficult posi-

tion. Ideally, Membrane would like to unwind the execu-

tion of the thread to the beginning of the first kernel-to-

file-system call as described above. However, the fact that

(non-file-system) kernel code has run complicates the un-

winding; kernel state will not be cleaned up during recov-

ery, and thus any state modifications made by the kernel

must be undone before restart.

For example, assume that the file system code is exe-

cuting (e.g., in function f1()) and calls into the kernel

(function k1()); the kernel then updates kernel-state in

someway (e.g., allocates memory or grabs locks) and then

calls back into the file system (function f2()); finally,

f2() returns to k1()which returns to f1()which com-

pletes. The tricky case arises when f2() crashes; if we

simply unwound execution naively, the state modifica-

tions made while in the kernel would be left intact, and

the kernel could quickly become unusable.

To overcome this challenge,Membrane employs a care-

ful skip/trust unwind protocol. The protocol skips over file

system code but trusts the kernel code to behave reason-

able in response to a failure and thus manage kernel state

correctly. Membrane coerces such behavior by carefully

arranging the return value on the stack, mimicking an er-

ror return from the failed file-system routine to the kernel;

the kernel code is then allowed to run and clean up as it

sees fit. We found that the Linux kernel did a good job of

checking return values from the file-system function and

in handling error conditions. In places where it did not

(12 such instances), we explicitly added code to do the

required check.

In the example above, when the fault is detected in

f2(), Membrane places an error code in the appropri-

ate location on the stack and returns control immediately

to k1(). This trusted kernel code is then allowed to ex-

ecute, hopefully freeing any resources that it no longer

needs (e.g., memory, locks) before returning control to

f1(). When the return to f1() is attempted, the control-

flow capture machinery again kicks into place and enables

Membrane to unwind the remainder of the stack. A real

example from Linux is shown in Figure 4.

Throughout this process, the u-stack is used to capture

the necessary state to enable Membrane to unwind prop-

Figure 4: The Skip/Trust Unwind Protocol. The fig-

ure depicts the call path from the open() system call through

the ext2 file system. The first sequence of calls (through

vfs create()) are in the generic (trusted) kernel; then the

(untrusted) ext2 routines are called; then ext2 calls back into the

kernel to prepare to write a page, which in turn may call back

into ext2 to get a block to write to. Assume a fault occurs at this

last level in the stack; Membrane catches the fault, and skips

back to the last trusted kernel routine, mimicking a failed call

to ext2 get block(); this routine then runs its normal fail-

ure recovery (marked by the circled “3” in the diagram), and

then tries to return again. Membrane’s control-flow capturema-

chinery catches this and then skips back all the way to the last

trusted kernel code (vfs create), thus mimicking a failed call

to ext2 create(). The rest of the code unwinds with Mem-

brane’s interference, executing various cleanup code along the

way (as indicated by the circled 2 and 1).

erly. Thus, both when the file system is first entered as

well as any time the kernel calls into the file system, wrap-

per functions push register state onto the u-stack; the val-

ues are subsequently popped off on return, or used to skip

back through the stack during unwind.

4.4.3 Other Recovery Functions

There are many other aspects of recoverywhich we do not

discuss in detail here for sake of space. For example, the

RM must orchestrate the entire recovery protocol, ensur-

ing that once threads are unwound (as described above),

the rest of the recovery protocol to unmount the file sys-

tem, free various objects, remount it, restore sessions, and

replay file system operations recorded in the logs, is car-

ried out. Finally, after recovery, RM allows the file system

to begin servicing new requests.

4.4.4 Correctness of Recovery

We now discuss the correctness of our recovery mecha-

nism. Membrane throws away the corrupted in-memory

state of the file system immediately after the crash. Since

faults are fail-stop in Membrane, on-disk data is never cor-

rupted. We also prevent any new operation from being is-

sued to the file system while recovery is being performed.

The file-system state is then reverted to the last known

10

TU Dresden Membrane: Operating Support for Restartable File Systems

CLEANUP STATE

■ Free all memory allocated by file system

■ Release all global locks in LIFO order

14

TU Dresden Membrane: Operating Support for Restartable File Systems

OPTIMIZATIONS
■ Compressed operation log

■ Uses „page stealing“

■ Latest written data is in dirty pages

■ „steal“ before recovery, write to disk

15

op-log (naive)

write(A) to blk 0

A

write(B) to blk 1

B

write(C) to blk 0

C

op-log (with page stealing)

write(A) to blk 0

write(B) to blk 1

write(C) to blk 0

Page Cache

C

B

(not needed)

Figure 2: Page Stealing. The figure depicts the op-log both

with and without page stealing. Without page stealing (left side

of the figure), user data quickly fills the log, thus exacting harsh

penalties in both time and space overheads. With page stealing

(right), only a reference to the in-memory page cache is recorded

with each write; further, only the latest such entry is needed to

replay the op-log successfully.

add, we will continue to “harden” the file-system/kernel

interface as our work continues.

4.3 Fault Anticipation
We now describe the fault anticipation support within the

current Membrane implementation. We begin by present-

ing our approach to reducing the cost of operation logging

via a technique we refer to as page stealing.

4.3.1 Low-Cost Op-Logging via Page Stealing

Membrane interposes at the VFS layer in order to record

the necessary information to the op-log about file-system

operations during an epoch. Thus, for any restartable file

system that is mounted, the VFS layer records an entry for

each operation that updates the file system state in some

way.

One key challenge of logging is to minimize the amount

of data logged in order to keep interpositioning costs

low. A naive implementation (including our first attempt)

might log all state-updating operations and their parame-

ters; unfortunately, this approach has a high cost due to

the overhead of logging write operations. For each write

to the file system, Membrane has to not only record that

a write took place but also log the data to the op-log, an

expensive operation both in time and space.

Membrane avoids the need to log this data through a

novel page stealing mechanism. Because dirty pages are

held in memory before checkpointing, Membrane is as-

sured that the most recent copy of the data is already

in memory (in the page cache). Thus, when Membrane

needs to replay the write, it steals the page from the cache

(before it is removed from the cache by recovery) and

writes the stolen page to disk. In this way, Membrane

avoids the costly logging of user data. Figure 2 shows

how page stealing helps in reducing the size of op-log.

When two writes to the same block have taken place,

note that only the last write needs to be replayed. Earlier

writes simply update the file position correctly. This strat-

egy works because reads are not replayed (indeed, they

have already completed); hence, only the current state of

the file system, as represented by the last checkpoint and

current op-log and s-log, must be reconstructed.

4.3.2 Other Logging and State Tracking

Membrane also interposes at the VFS layer to track all

necessary session state in the s-log. There is little infor-

mation to track here: simply which files are open (with

their pathnames) and the current file position of each file.

Membrane also needs to track memory allocations per-

formed by a restartable file system. We added a new allo-

cation flag, GFP RESTARTABLE, in Membrane. We also

provide a new header file to include in file-system code

to append GFP RESTARTABLE to all memory allocation

call. This enables the memory allocation module in the

kernel to record the necessary per-file-system information

into the m-table and thus prepare for recovery.

Tracking lock acquisitions is also straightforward. As

we mentioned earlier, locks that are private to the file sys-

tem will be ignored during recovery, and hence need not

be tracked; only global locks need to be monitored. Thus,

when a thread is running in the file system, the instru-

mented lock function saves the lock information in the

thread’s private l-stack for the following locks: the global

kernel lock, super-block lock, and the inode lock.

Finally, Membrane must also track register state across

certain code boundaries to unwind threads properly. To do

so, Membrane wraps all calls from the kernel into the file

system; these wrappers push and pop register state, return

addresses, and return values onto and off of the u-stack.

4.3.3 COW-based Checkpointing

Our goal of checkpointing was to find a solution that is

lightweight and works correctly despite the lack of trans-

actional machinery in file systems such as Linux ext2,

many UFS implementations, and various FAT file sys-

tems; these file systems do not include journaling or

shadow paging to naturally partition file system updates

into transactions.

One could implement a checkpoint using the following

strawman protocol. First, during an epoch, prevent dirty

pages from being flushed to disk. Second, at the end of

an epoch, checkpoint file-system state by first halting file

system activity and then forcing all dirty pages to disk.

At this point, the on-disk state would be consistent. If a

file-system failure occurred during the next epoch, Mem-

brane could rollback the file system to the beginning of

the epoch, replay logged operations, and thus recover the

file system.

The obvious problem with the strawman is perfor-

mance: forcing pages to disk during checkpointing makes

checkpointing slow, which slows applications. Further,

8

TU Dresden Membrane: Operating Support for Restartable File Systems

FAULT STUDY

16

checkpoint (which is guaranteed to be consistent). Next,

successfully completed op-logs are replayed to restore the

file-system state to the crash time. Finally, the unwound

processes are allowed to execute again.

Non-determinism could arise while replaying the com-

pleted operations. The order recorded in op-logs need not

be the same as the order executed by the scheduler. This

new execution order could potentially pose a problem

while replaying completed write operations as applica-

tions could have observed the modified state (via read) be-

fore the crash. On the other hand, operations that modify

the file-system state (such as create, unlink, etc.) would

not be a problem as conflicting operations are resolved by

the file system through locking.

Membrane avoids non-deterministic replay of com-

pleted write operations through page stealing. While re-

playing completed operations, Membrane reads the final

version of the page from the page cache and re-executes

the write operation by copying the data from it. As a re-

sult, write operations while being replayed will end up

with the same final version no matter what order they

are executed. Lastly, as the in-flight operations have not

returned back to the application, Membrane allows the

scheduler to execute them in arbitrary order.

5 Evaluation
We now evaluate Membrane in the following three cate-

gories: transparency, performance, and generality. All ex-

periments were performed on a machine with a 2.2 GHz

Opteron processor, two 80GB WDC disks, and 2GB of

memory running Linux 2.6.15. We evaluated Membrane

using ext2, VFAT, and ext3. The ext3 file system was

mounted in data journaling mode in all the experiments.

5.1 Transparency
We employ fault injection to analyze the transparency of-

fered by Membrane in hiding file system crashes from ap-

plications. The goal of these experiments is to show the

inability of current systems in hiding faults from applica-

tion and how using Membrane can avoid them.

Our injection study is quite targeted; we identify places

in the file system code where faults may cause trouble,

and inject faults there, and observe the result. These

faults represent transient errors from three different com-

ponents: virtual memory (e.g., kmap, d alloc anon), disks

(e.g., write full page, sb bread), and kernel-proper (e.g.,

clear inode, iget). In all, we injected 47 faults in differ-

ent code paths in three file systems. We believe that many

more faults could be injected to highlight the same issue.

Table 3 presents the results of our study. The caption

explains how to interpret the data in the table. In all ex-

periments, the operating system was always usable after

fault injection (not shown in the table). We now discuss

our major observations and conclusions.

ext2 ext2+ ext2+

boundary Membrane

ext2 Function Fault H
o
w
D
et
ec
te
d
?

A
p
p
li
ca
ti
o
n
?

F
S
:C
o
n
si
st
en
t?

F
S
:U
sa
b
le
?

H
o
w
D
et
ec
te
d
?

A
p
p
li
ca
ti
o
n
?

F
S
:C
o
n
si
st
en
t?

F
S
:U
sa
b
le
?

H
o
w
D
et
ec
te
d
?

A
p
p
li
ca
ti
o
n
?

F
S
:C
o
n
si
st
en
t?

F
S
:U
sa
b
le
?

create null-pointer o × × × o × × × d
√√ √

create mark inode dirty o × × × o × × × d
√√ √

writepage write full page o ×
√ √

a d s ×
√

a d
√√ √

writepages write full page o × ×
√a d s ×

√a d
√√ √

free inode mark buffer dirty o × × × ob × ×
√a d

√√ √

mkdir d instantiate o × × × d s
√ √

d
√√ √

get block map bh o × ×
√

a ob × × × d
√√ √

readdir page address G× × × G × × × d
√√ √

get page kmap o ×
√

× ob ×
√

× d
√√ √

get page wait page locked o ×
√

× ob ×
√

× d
√√ √

get page read cache page o ×
√

× o ×
√

× d
√√ √

lookup iget o ×
√

× ob ×
√

× d
√√ √

add nondir d instantiate o × × × d e
√ √

d
√√ √

find entry page address G×
√

× Gb ×
√

× d
√√ √

symlink null-pointer o × × × o ×
√

× d
√√ √

rmdir null-pointer o ×
√

× o ×
√

× d
√√ √

empty dir page address G×
√

× G ×
√

× d
√√ √

make empty grab cache page o ×
√

× ob × × × d
√√ √

commit chunk unlock page o ×
√

× d e × × d
√√ √

readpage mpage readpage o ×
√ √

i ×
√ √

d
√√ √

vfat vfat+ vfat+

vfat Function Fault boundary Membrane

create null-pointer o × × × o × × × d
√√ √

create d instantiate o × × × o × × × d
√√ √

writepage blk write fullpage o × ×
√

a d s ×
√

a d
√√ √

mkdir d instantiate o ×
√

× d s
√ √

d
√√ √

rmdir null-pointer o ×
√

× o ×
√√a d

√√ √

lookup d find alias o ×
√

× d e
√ √

d
√√ √

get entry sb bread o ×
√

× o ×
√

× d
√√ √

get block map bh o × ×
√

a o × ×
√

a d
√√ √

remove entries mark buffer dirty o × ×
√

a d s ×
√

d
√√ √

write inode mark buffer dirty o × ×
√

a d s
√ √

d
√√ √

clear inode is bad inode o × ×
√

a d s
√ √

d
√√ √

get dentry d alloc anon o × ×
√

a ob × × × d
√√ √

readpage mpage readpage o ×
√ √

a o ×
√√

a d
√√ √

ext3 ext3+ ext3+

ext3 Function Fault boundary Membrane

create null-pointer o × × × o ×
√

× d
√√ √

get blk handle bh result o × × × d s ×
√a d

√√ √

follow link nd set link o × ×
√

a d e
√ √

d
√√ √

mkdir d instantiate o × × × d s
√ √

d
√√ √

symlink null-pointer o × × × d ×
√

× d
√√ √

readpage mpage readpage o × ×
√

a d ×
√√

a d
√√ √

add nondir d instantiate o ×
√

× o ×
√

× d
√√ √

prepare write blk prepare write o ×
√

× i e
√ √

d
√√ √

read blk bmap sb bread o ×
√

× o ×
√

× d
√√ √

new block dquot alloc blk o ×
√

× o ×
√

× d
√√ √

readdir null-pointer o × × × o ×
√√a d

√√ √

file write file aio write G×
√ √

i e
√ √

d
√√ √

free inode clear inode o × × × o ×
√

× d
√√ √

new inode null-pointer o ×
√

× i × ×
√a d

√√ √

Table 3: Fault Study. The table shows the results of fault

injections on the behavior of Linux ext2, VFAT and ext3. Each

row presents the results of a single experiment, and the columns

show (in left-to-right order): which routine the fault was injected

into, the nature of the fault, how/if it was detected, how it af-

fected the application, whether the file system was consistent af-

ter the fault, and whether the file system was usable. Various

symbols are used to condense the presentation. For detection,

“o”: kernel oops; “G”: general protection fault; “i”: invalid

opcode; “d”: fault detected, say by an assertion. For applica-

tion behavior, “×”: application killed by the OS; “
√
”: appli-

cation continued operation correctly; “s”: operation failed but

application ran successfully (silent failure); “e”: application

ran and returned an error. Footnotes: a- file system usable, but

un-unmountable; b - late oops or fault, e.g., after an error code

was returned.

11

TU Dresden Membrane: Operating Support for Restartable File Systems

PERFORMANCE

■ „[...] in all cases, the overheads were
between 0% and 2%“

17

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Seq. read 17.8 17.8 17.8 17.8 17.7 17.7
Seq. write 25.5 25.7 56.3 56.3 18.5 20.2
Rand. read 163.2 163.5 163.2 163.2 163.5 163.6
Rand. write 20.3 20.5 65.5 65.5 18.9 18.9
create 34.1 34.1 33.9 34.3 32.4 34.0
delete 20.0 20.1 18.6 18.7 20.8 21.0

Table 4: Microbenchmarks. This table compares the exe-

cution time (in seconds) for various benchmarks for restartable

versions of ext2, ext3, VFAT (onMembrane) against their regular

versions on the unmodified kernel. Sequential read/writes are 4

KB at a time to a 1-GB file. Random reads/writes are 4 KB at

a time to 100 MB of a 1-GB file. Create/delete copies/removes

1000 files each of size 1MB to/from the file system respectively.

All workloads use a cold file-system cache.

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Sort 142.2 142.6 152.1 152.5 146.5 146.8
OpenSSH 28.5 28.9 28.7 29.1 30.1 30.8
PostMark 46.9 47.2 478.2 484.1 43.1 43.8

Table 5: Macrobenchmarks. The table presents the per-

formance (in seconds) of different benchmarks running on both

standard and restartable versions of ext2, VFAT, and ext3. The

sort benchmark (CPU intensive) sorts roughly 100MB of text us-

ing the command-line sort utility. For the OpenSSH benchmark

(CPU+I/O intensive), we measure the time to copy, untar, con-

figure, and make the OpenSSH 4.51 source code. PostMark (I/O

intensive) parameters are: 3000 files (sizes 4KB to 4MB), 60000

transactions, and 50/50 read/append and create/delete biases.

First, we analyzed the vanilla versions of the file sys-

tems on standard Linux kernel as our base case. The re-

sults are shown in the leftmost result column in Table 3.

We observed that Linux does a poor job in recovering

from the injected faults; most faults (around 91%) trig-

gered a kernel “oops” and the application (i.e., the pro-

cess performing the file system operation that triggered

the fault) was always killed. Moreover, in one-third of the

cases, the file system was left unusable, thus requiring a

reboot and repair (fsck).

Second, we analyzed the usefulness of fault detection

without recovery by hardening the kernel and file-system

boundary through parameter checks. The second result

column (denoted by +boundary) of Table 3 shows the re-

sults. Although assertions detect the bad argument passed

to the kernel proper function, in the majority of the cases,

the returned error code was not handled properly (or prop-

agated) by the file system. The application was always

killed and the file system was left inconsistent, unusable,

or both.

Finally, we focused on file systems surrounded by

Membrane. The results of the experiments are shown

in the rightmost column of Table 3; faults were handled,

applications did not notice faults, and the file system re-

mained in a consistent and usable state.

In summary, even in a limited and controlled set of fault

injection experiments, we can easily realize the usefulness

of Membrane in recovering from file system crashes. In

a standard or hardened environment, a file system crash

is almost always visible to the user and the process per-

forming the operation is killed. Membrane, on detecting a

file system crash, transparently restarts the file system and

leaves it in a consistent and usable state.

5.2 Performance
To evaluate the performance ofMembrane, we run a series

of both microbenchmark and macrobenchmarkworkloads

where ext2, VFAT, and ext3 are run in a standard environ-

ment and within the Membrane framework.

Tables 4 and 5 show the results of our microbenchmark

and macrobenchmark experiments respectively. From the

tables, one can see that the performance overheads of our

prototype are quite minimal; in all cases, the overheads

were between 0% and 2%.

Data Recovery

(MB) time (ms)

10 12.9

20 13.2

40 16.1

(a)

Open Recovery

Sessions time (ms)

200 11.4

400 14.6

800 22.0

(b)

Log Recovery

Records time (ms)

1K 15.3

10K 16.8

100K 25.2

(c)

Table 6: Recovery Time. Tables a, b, and c show re-

covery time as a function of dirty pages (at checkpoint), s-log,

and op-log respectively. Dirty pages are created by copying new

files. Open sessions are created by getting handles to files. Log

records are generated by reading and seeking to arbitrary data

inside multiple files. The recovery time was 8.6ms when all three

states were empty.

Recovery Time. Beyond baseline performance under no

crashes, we were interested in studying the performance

of Membrane during recovery. Specifically, how long

does it take Membrane to recover from a fault? This met-

ric is particularly important as high recovery times may

be noticed by applications.

We measured the recovery time in a controlled environ-

ment by varying the amount of state kept by Membrane

and found that the recovery time grows sub-linearly with

the amount of state and is only a few milliseconds in all

the cases. Table 6 shows the result of varying the amount

of state in the s-log, op-log and the number of dirty pages

from the previous checkpoint.

We also ran microbenchmarks and forcefully crashed

ext2, ext3, and VFAT file systems during execution

to measure the impact in application throughput inside

Membrane. Figure 5 shows the results for performing re-

covery during the random-read microbenchmark for the

ext2 file system. From the figure, we can see that Mem-

brane restarts the file system within 10ms from the point

of crash. Subsequent read operations are slower than the

regular case because the indirect blocks, that were cached

by the file system, are thrown away at recovery time in

our current prototype and have to be read back again after

recovery (as shown in the graph).

12

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Seq. read 17.8 17.8 17.8 17.8 17.7 17.7
Seq. write 25.5 25.7 56.3 56.3 18.5 20.2
Rand. read 163.2 163.5 163.2 163.2 163.5 163.6
Rand. write 20.3 20.5 65.5 65.5 18.9 18.9
create 34.1 34.1 33.9 34.3 32.4 34.0
delete 20.0 20.1 18.6 18.7 20.8 21.0

Table 4: Microbenchmarks. This table compares the exe-

cution time (in seconds) for various benchmarks for restartable

versions of ext2, ext3, VFAT (onMembrane) against their regular

versions on the unmodified kernel. Sequential read/writes are 4

KB at a time to a 1-GB file. Random reads/writes are 4 KB at

a time to 100 MB of a 1-GB file. Create/delete copies/removes

1000 files each of size 1MB to/from the file system respectively.

All workloads use a cold file-system cache.

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Sort 142.2 142.6 152.1 152.5 146.5 146.8
OpenSSH 28.5 28.9 28.7 29.1 30.1 30.8
PostMark 46.9 47.2 478.2 484.1 43.1 43.8

Table 5: Macrobenchmarks. The table presents the per-

formance (in seconds) of different benchmarks running on both

standard and restartable versions of ext2, VFAT, and ext3. The

sort benchmark (CPU intensive) sorts roughly 100MB of text us-

ing the command-line sort utility. For the OpenSSH benchmark

(CPU+I/O intensive), we measure the time to copy, untar, con-

figure, and make the OpenSSH 4.51 source code. PostMark (I/O

intensive) parameters are: 3000 files (sizes 4KB to 4MB), 60000

transactions, and 50/50 read/append and create/delete biases.

First, we analyzed the vanilla versions of the file sys-

tems on standard Linux kernel as our base case. The re-

sults are shown in the leftmost result column in Table 3.

We observed that Linux does a poor job in recovering

from the injected faults; most faults (around 91%) trig-

gered a kernel “oops” and the application (i.e., the pro-

cess performing the file system operation that triggered

the fault) was always killed. Moreover, in one-third of the

cases, the file system was left unusable, thus requiring a

reboot and repair (fsck).

Second, we analyzed the usefulness of fault detection

without recovery by hardening the kernel and file-system

boundary through parameter checks. The second result

column (denoted by +boundary) of Table 3 shows the re-

sults. Although assertions detect the bad argument passed

to the kernel proper function, in the majority of the cases,

the returned error code was not handled properly (or prop-

agated) by the file system. The application was always

killed and the file system was left inconsistent, unusable,

or both.

Finally, we focused on file systems surrounded by

Membrane. The results of the experiments are shown

in the rightmost column of Table 3; faults were handled,

applications did not notice faults, and the file system re-

mained in a consistent and usable state.

In summary, even in a limited and controlled set of fault

injection experiments, we can easily realize the usefulness

of Membrane in recovering from file system crashes. In

a standard or hardened environment, a file system crash

is almost always visible to the user and the process per-

forming the operation is killed. Membrane, on detecting a

file system crash, transparently restarts the file system and

leaves it in a consistent and usable state.

5.2 Performance
To evaluate the performance ofMembrane, we run a series

of both microbenchmark and macrobenchmarkworkloads

where ext2, VFAT, and ext3 are run in a standard environ-

ment and within the Membrane framework.

Tables 4 and 5 show the results of our microbenchmark

and macrobenchmark experiments respectively. From the

tables, one can see that the performance overheads of our

prototype are quite minimal; in all cases, the overheads

were between 0% and 2%.

Data Recovery

(MB) time (ms)

10 12.9

20 13.2

40 16.1

(a)

Open Recovery

Sessions time (ms)

200 11.4

400 14.6

800 22.0

(b)

Log Recovery

Records time (ms)

1K 15.3

10K 16.8

100K 25.2

(c)

Table 6: Recovery Time. Tables a, b, and c show re-

covery time as a function of dirty pages (at checkpoint), s-log,

and op-log respectively. Dirty pages are created by copying new

files. Open sessions are created by getting handles to files. Log

records are generated by reading and seeking to arbitrary data

inside multiple files. The recovery time was 8.6ms when all three

states were empty.

Recovery Time. Beyond baseline performance under no

crashes, we were interested in studying the performance

of Membrane during recovery. Specifically, how long

does it take Membrane to recover from a fault? This met-

ric is particularly important as high recovery times may

be noticed by applications.

We measured the recovery time in a controlled environ-

ment by varying the amount of state kept by Membrane

and found that the recovery time grows sub-linearly with

the amount of state and is only a few milliseconds in all

the cases. Table 6 shows the result of varying the amount

of state in the s-log, op-log and the number of dirty pages

from the previous checkpoint.

We also ran microbenchmarks and forcefully crashed

ext2, ext3, and VFAT file systems during execution

to measure the impact in application throughput inside

Membrane. Figure 5 shows the results for performing re-

covery during the random-read microbenchmark for the

ext2 file system. From the figure, we can see that Mem-

brane restarts the file system within 10ms from the point

of crash. Subsequent read operations are slower than the

regular case because the indirect blocks, that were cached

by the file system, are thrown away at recovery time in

our current prototype and have to be read back again after

recovery (as shown in the graph).

12

TU Dresden Membrane: Operating Support for Restartable File Systems

RESTART

18

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Seq. read 17.8 17.8 17.8 17.8 17.7 17.7
Seq. write 25.5 25.7 56.3 56.3 18.5 20.2
Rand. read 163.2 163.5 163.2 163.2 163.5 163.6
Rand. write 20.3 20.5 65.5 65.5 18.9 18.9
create 34.1 34.1 33.9 34.3 32.4 34.0
delete 20.0 20.1 18.6 18.7 20.8 21.0

Table 4: Microbenchmarks. This table compares the exe-

cution time (in seconds) for various benchmarks for restartable

versions of ext2, ext3, VFAT (onMembrane) against their regular

versions on the unmodified kernel. Sequential read/writes are 4

KB at a time to a 1-GB file. Random reads/writes are 4 KB at

a time to 100 MB of a 1-GB file. Create/delete copies/removes

1000 files each of size 1MB to/from the file system respectively.

All workloads use a cold file-system cache.

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Sort 142.2 142.6 152.1 152.5 146.5 146.8
OpenSSH 28.5 28.9 28.7 29.1 30.1 30.8
PostMark 46.9 47.2 478.2 484.1 43.1 43.8

Table 5: Macrobenchmarks. The table presents the per-

formance (in seconds) of different benchmarks running on both

standard and restartable versions of ext2, VFAT, and ext3. The

sort benchmark (CPU intensive) sorts roughly 100MB of text us-

ing the command-line sort utility. For the OpenSSH benchmark

(CPU+I/O intensive), we measure the time to copy, untar, con-

figure, and make the OpenSSH 4.51 source code. PostMark (I/O

intensive) parameters are: 3000 files (sizes 4KB to 4MB), 60000

transactions, and 50/50 read/append and create/delete biases.

First, we analyzed the vanilla versions of the file sys-

tems on standard Linux kernel as our base case. The re-

sults are shown in the leftmost result column in Table 3.

We observed that Linux does a poor job in recovering

from the injected faults; most faults (around 91%) trig-

gered a kernel “oops” and the application (i.e., the pro-

cess performing the file system operation that triggered

the fault) was always killed. Moreover, in one-third of the

cases, the file system was left unusable, thus requiring a

reboot and repair (fsck).

Second, we analyzed the usefulness of fault detection

without recovery by hardening the kernel and file-system

boundary through parameter checks. The second result

column (denoted by +boundary) of Table 3 shows the re-

sults. Although assertions detect the bad argument passed

to the kernel proper function, in the majority of the cases,

the returned error code was not handled properly (or prop-

agated) by the file system. The application was always

killed and the file system was left inconsistent, unusable,

or both.

Finally, we focused on file systems surrounded by

Membrane. The results of the experiments are shown

in the rightmost column of Table 3; faults were handled,

applications did not notice faults, and the file system re-

mained in a consistent and usable state.

In summary, even in a limited and controlled set of fault

injection experiments, we can easily realize the usefulness

of Membrane in recovering from file system crashes. In

a standard or hardened environment, a file system crash

is almost always visible to the user and the process per-

forming the operation is killed. Membrane, on detecting a

file system crash, transparently restarts the file system and

leaves it in a consistent and usable state.

5.2 Performance
To evaluate the performance ofMembrane, we run a series

of both microbenchmark and macrobenchmarkworkloads

where ext2, VFAT, and ext3 are run in a standard environ-

ment and within the Membrane framework.

Tables 4 and 5 show the results of our microbenchmark

and macrobenchmark experiments respectively. From the

tables, one can see that the performance overheads of our

prototype are quite minimal; in all cases, the overheads

were between 0% and 2%.

Data Recovery

(MB) time (ms)

10 12.9

20 13.2

40 16.1

(a)

Open Recovery

Sessions time (ms)

200 11.4

400 14.6

800 22.0

(b)

Log Recovery

Records time (ms)

1K 15.3

10K 16.8

100K 25.2

(c)

Table 6: Recovery Time. Tables a, b, and c show re-

covery time as a function of dirty pages (at checkpoint), s-log,

and op-log respectively. Dirty pages are created by copying new

files. Open sessions are created by getting handles to files. Log

records are generated by reading and seeking to arbitrary data

inside multiple files. The recovery time was 8.6ms when all three

states were empty.

Recovery Time. Beyond baseline performance under no

crashes, we were interested in studying the performance

of Membrane during recovery. Specifically, how long

does it take Membrane to recover from a fault? This met-

ric is particularly important as high recovery times may

be noticed by applications.

We measured the recovery time in a controlled environ-

ment by varying the amount of state kept by Membrane

and found that the recovery time grows sub-linearly with

the amount of state and is only a few milliseconds in all

the cases. Table 6 shows the result of varying the amount

of state in the s-log, op-log and the number of dirty pages

from the previous checkpoint.

We also ran microbenchmarks and forcefully crashed

ext2, ext3, and VFAT file systems during execution

to measure the impact in application throughput inside

Membrane. Figure 5 shows the results for performing re-

covery during the random-read microbenchmark for the

ext2 file system. From the figure, we can see that Mem-

brane restarts the file system within 10ms from the point

of crash. Subsequent read operations are slower than the

regular case because the indirect blocks, that were cached

by the file system, are thrown away at recovery time in

our current prototype and have to be read back again after

recovery (as shown in the graph).

12

TU Dresden Membrane: Operating Support for Restartable File Systems

RESTART IMPACT

19

Elapsed time (s)

R
e
a
d
 L

a
te

n
c
y
(m

s
)

15 25 35 45 55
0

4

8

12

Crash

15 25 35 45 55

In
d
ir
e
c
t
b
lo

c
k
s

0

20

40

60

Average Response Time

Response Time

Indirect Blocks

Figure 5: Recovery Overhead. The figure shows the over-

head of restarting ext2 while running random-read microbench-

mark. The x axis represents the overall elapsed time of the mi-

crobenchmark in seconds. The primary y axis contains the ex-

ecution time per read operation as observed by the application

in milliseconds. A file-system crash was triggered at 34s, as a

result the total elapsed time increased from 66.5s to 67.1s. The

secondary y axis contains the number of indirect blocks read by

the ext2 file system from the disk per second.

In summary, both micro and macrobenchmarks show

that the fault anticipation in Membrane almost comes for

free. Even in the event of a file system crash, Membrane

restarts the file system within a few milliseconds.

5.3 Generality
We chose ext2, VFAT, and ext3 to evaluate the generality

of our approach. ext2 and VFAT were chosen for their

lack of crash consistency machinery and for their com-

pletely different on-disk layout. ext3 was selected for

its journaling machinery that provides better crash con-

sistency guarantees than ext2. Table 7 shows the code

changes required in each file system.

File System Added Modified

ext2 4 0

VFAT 5 0

ext3 1 0

JBD 4 0

Individual File-system Changes

Components No Checkpoint With Checkpoint

Added Modified Added Modified

FS 1929 30 2979 64

MM 779 5 867 15

Arch 0 0 733 4

Headers 522 6 552 6

Module 238 0 238 0

Total 3468 41 5369 89

Kernel Changes

Table 7: Implementation Complexity. The table presents
the code changes required to transform a ext2, VFAT, ext3, and

vanilla Linux 2.6.15 x86 64 kernel into their restartable counter-

parts. Most of the modified lines indicate places where vanilla

kernel did not check/handle errors propagated by the file system.

As our changes were non-intrusive in nature, none of existing

code was removed from the kernel.

From the table, we can see that the file system spe-

cific changes required to work with Membrane are min-

imal. For ext3, we also added 4 lines of code to JBD

to notify the beginning and the end of transactions to the

checkpoint manager, which could then discard the opera-

tion logs of the committed transactions. All of the addi-

tions were straightforward, including adding a new header

file to propagate the GFP RESTARTABLE flag and code

to write back the free block/inode/cluster count when the

write super method of the file system was called. No

modification (or deletions) of existing code were required

in any of the file systems.

In summary, Membrane represents a generic approach

to achieve file system restartability; existing file systems

can work with Membranewith minimal changes of adding

a few lines of code.

6 Conclusions
File systems fail. With Membrane, failure is transformed

from a show-stopping event into a small performance is-

sue. The benefits are many: Membrane enables file-

system developers to ship file systems sooner, as small

bugs will not cause massive user headaches. Membrane

similarly enables customers to install new file systems,

knowing that it won’t bring down their entire operation.

Membrane further encourages developers to harden

their code and catch bugs as soon as possible. This fringe

benefit will likely lead to more bugs being triggered in the

field (and handled by Membrane, hopefully); if so, diag-

nostic information could be captured and shipped back to

the developer, further improving file system robustness.

We live in an age of imperfection, and software imper-

fection seems a fact of life rather than a temporary state

of affairs. With Membrane, we can learn to embrace that

imperfection, instead of fearing it. Bugs will still arise,

but those that are rare and hard to reproduce will remain

where they belong, automatically “fixed” by a system that

can tolerate them.

7 Acknowledgments
We thank the anonymous reviewers and Dushyanth Narayanan

(our shepherd) for their feedback and comments, which have

substantially improved the content and presentation of this pa-

per. We also thank Haryadi Gunawi for his insightful comments.

This material is based upon work supported by the National

Science Foundation under the following grants: CCF-0621487,

CNS-0509474, CNS-0834392, CCF-0811697, CCF-0811697,

CCF-0937959, as well as by generous donations from NetApp,

Sun Microsystems, and Google.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of NSF or other institutions.

References
[1] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Sys-

tems. http://opensolaris.org/os/community/zfs/docs/zfs last.pdf,
2007.

[2] George Candea and Armando Fox. Crash-Only Software. In The
Ninth Workshop on Hot Topics in Operating Systems (HotOS IX),
Lihue, Hawaii, May 2003.

13

TU Dresden Membrane: Operating Support for Restartable File Systems

COMPLEXITY

20

Elapsed time (s)

R
e

a
d

 L
a

te
n

c
y
(m

s
)

15 25 35 45 55
0

4

8

12

Crash

15 25 35 45 55

In
d

ir
e

c
t

b
lo

c
k
s

0

20

40

60

Average Response Time

Response Time

Indirect Blocks

Figure 5: Recovery Overhead. The figure shows the over-

head of restarting ext2 while running random-read microbench-

mark. The x axis represents the overall elapsed time of the mi-

crobenchmark in seconds. The primary y axis contains the ex-

ecution time per read operation as observed by the application

in milliseconds. A file-system crash was triggered at 34s, as a

result the total elapsed time increased from 66.5s to 67.1s. The

secondary y axis contains the number of indirect blocks read by

the ext2 file system from the disk per second.

In summary, both micro and macrobenchmarks show

that the fault anticipation in Membrane almost comes for

free. Even in the event of a file system crash, Membrane

restarts the file system within a few milliseconds.

5.3 Generality
We chose ext2, VFAT, and ext3 to evaluate the generality

of our approach. ext2 and VFAT were chosen for their

lack of crash consistency machinery and for their com-

pletely different on-disk layout. ext3 was selected for

its journaling machinery that provides better crash con-

sistency guarantees than ext2. Table 7 shows the code

changes required in each file system.

File System Added Modified

ext2 4 0

VFAT 5 0

ext3 1 0

JBD 4 0

Individual File-system Changes

Components No Checkpoint With Checkpoint

Added Modified Added Modified

FS 1929 30 2979 64

MM 779 5 867 15

Arch 0 0 733 4

Headers 522 6 552 6

Module 238 0 238 0

Total 3468 41 5369 89

Kernel Changes

Table 7: Implementation Complexity. The table presents
the code changes required to transform a ext2, VFAT, ext3, and

vanilla Linux 2.6.15 x86 64 kernel into their restartable counter-

parts. Most of the modified lines indicate places where vanilla

kernel did not check/handle errors propagated by the file system.

As our changes were non-intrusive in nature, none of existing

code was removed from the kernel.

From the table, we can see that the file system spe-

cific changes required to work with Membrane are min-

imal. For ext3, we also added 4 lines of code to JBD

to notify the beginning and the end of transactions to the

checkpoint manager, which could then discard the opera-

tion logs of the committed transactions. All of the addi-

tions were straightforward, including adding a new header

file to propagate the GFP RESTARTABLE flag and code

to write back the free block/inode/cluster count when the

write super method of the file system was called. No

modification (or deletions) of existing code were required

in any of the file systems.

In summary, Membrane represents a generic approach

to achieve file system restartability; existing file systems

can work with Membranewith minimal changes of adding

a few lines of code.

6 Conclusions
File systems fail. With Membrane, failure is transformed

from a show-stopping event into a small performance is-

sue. The benefits are many: Membrane enables file-

system developers to ship file systems sooner, as small

bugs will not cause massive user headaches. Membrane

similarly enables customers to install new file systems,

knowing that it won’t bring down their entire operation.

Membrane further encourages developers to harden

their code and catch bugs as soon as possible. This fringe

benefit will likely lead to more bugs being triggered in the

field (and handled by Membrane, hopefully); if so, diag-

nostic information could be captured and shipped back to

the developer, further improving file system robustness.

We live in an age of imperfection, and software imper-

fection seems a fact of life rather than a temporary state

of affairs. With Membrane, we can learn to embrace that

imperfection, instead of fearing it. Bugs will still arise,

but those that are rare and hard to reproduce will remain

where they belong, automatically “fixed” by a system that

can tolerate them.

7 Acknowledgments
We thank the anonymous reviewers and Dushyanth Narayanan

(our shepherd) for their feedback and comments, which have

substantially improved the content and presentation of this pa-

per. We also thank Haryadi Gunawi for his insightful comments.

This material is based upon work supported by the National

Science Foundation under the following grants: CCF-0621487,

CNS-0509474, CNS-0834392, CCF-0811697, CCF-0811697,

CCF-0937959, as well as by generous donations from NetApp,

Sun Microsystems, and Google.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of NSF or other institutions.

References
[1] Jeff Bonwick and Bill Moore. ZFS: The Last Word in File Sys-

tems. http://opensolaris.org/os/community/zfs/docs/zfs last.pdf,
2007.

[2] George Candea and Armando Fox. Crash-Only Software. In The
Ninth Workshop on Hot Topics in Operating Systems (HotOS IX),
Lihue, Hawaii, May 2003.

13

TU Dresden Membrane: Operating Support for Restartable File Systems

SUMMARY

21

■ „File systems fail“

■ Usually they case kernel / app crashes

■ Membrane allows them to be restarted

■ Light-weight

■ Stateful

■ Generic

■ Transparent

TU Dresden Membrane: Operating Support for Restartable File Systems

DISCUSSION

22

■ Does the fault model actually cover most
of the bugs?

■ NFS?

■ Why is it called „Membrane“?

