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level off but remain steady as load continues to increase. Instead,
as load increases, blocking synchronization overwhelms the OS
scheduler, causing poor performance after 32 threads. Spinning
fares better at first, but as load crosses 100% its performance also
drops off drastically due to priority inversions. 

Nearly all of the challenges which arise with either spinning or
blocking are due to scheduling concerns. Spinning gives optimal
performance under light load (when no scheduling is needed), but
performs poorly under high load because preempted lock holders
trigger priority inversions. Similarly, blocking synchronization
performs badly because it potentially causes a context switch with
every lock handoff. Frequent context switching leads to scheduling
bottlenecks and adds significant overhead to the critical path. Fine-
grained synchronization aggravates the problem because it favors
frequent, short critical sections — much shorter than a context
switch — over longer and more coarse-grained ones. 

 We argue that the solution to the spinning-blocking trade-off
lies not with a more effective hybrid scheme, but in decoupling
load control from contention management. Effective contention
management uses spinning for fast lock hand-offs and does not
block in response to contention. Effective load control then pre-
vents spinning threads from causing overload while keeping load
low enough that lock holders are not preempted. We propose a
mechanism which  achieves both goals by notifying a random sub-
set of spinning threads to block in response to overload, waking
them when load drops or after a timeout of roughly one scheduler
time slice. Spinning threads are attractive targets because they can-
not make forward progress by definition, so removing them does
not hurt performance in the short term. Further, removing some
spinning threads from a loaded system ensures that lock holders
responsible for the wait are able to run, while leaving enough other
spinning threads to preserve fast lock handoffs. Finally, OS time
slicing operates normally in the absence of contention, though load
control remains active to disrupt any convoys which might arise. 

In summary, this paper makes three main contributions: 

1. We show that scheduler activity on the critical path of lock
handoffs underlies performance problems with the current
state-of-the-art in both spinning and blocking primitives.

2. We propose to decouple contention management from schedul-
ing, which moves the OS scheduler completely off the critical
path and allows applications to exploit the best properties of
spinning and blocking instead of merely trading them off. 

3. We design and implement a load control mechanism which
achieves the proposed decoupling without modifications to the
OS kernel or scheduler. For a variety of benchmarks, we
achieve peak performance for lightly loaded machines, while
retaining 85% of that peak even with 200% load (two runnable
threads per hardware context).

The rest of the paper is organized as follows. The next section
expands on the evolution of synchronization algorithms, and
related issues such as scheduling and preemption resistance.
Section 3 introduces our proposed load control mechanism and
discusses implementation issues. Sections 4-6 present and evaluate
the load control implementation. Section 7 compares load control
with alternative approaches, followed by conclusions in Section 8.

2. Managing Load and Contention

This section examines different approaches related to conflict reso-
lution for locking primitives (see Section 7 for a discussion of
alternatives to locking). We focus on locking because it is a gen-
eral-purpose and widely-utilized approach to synchronization.
Conflict resolution is necessary because threads which encounter
contention must wait for the lock to be released. As mentioned,
there are two fundamental contention management approaches —
spinning and blocking — as well as variants which extend and
combine the two to mitigate their various weaknesses. Figure 2
illustrates the space of challenges encountered in implementing
locking primitives and how solutions for these evolved; each
underlined text block is a challenge and connecting arrows are
existing solutions which attempt to overcome the challenge. 

Under blocking schemes (grouped toward the right of Figure
2), threads are descheduled in response to contention. Blocking has
the primary benefit of freeing the CPU until the waiting thread can
make progress again. As an added advantage, the scheduler can
cooperate with blocking synchronization, for example by desched-
uling threads which wait for a preempted lock. Blocking is an
expensive operation, however, because it requires two context
switches (with corresponding OS scheduling decisions), adding
10-15µs to the critical path of the system. A longer critical path
increases the likelihood that other threads will encounter conten-
tion and block, forming a vicious cycle of extremely slow lock
handoffs known as a convoy [5]. Because convoys are so damag-
ing to scalability, purely blocking contention management is only
used in uniprocessor systems where spinning leads to deadlock. 

Figure 1.  Weaknesses in state-of-the-art synchronization primi-
tives which use blocking and spinning.
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In contrast to blocking, spinning or “busy waiting” schemes
(grouped on the left side of Figure 2) leave waiting threads on
CPU as they poll a memory location for changes that indicate a
lock handoff. Pure spinning is highly responsive (1-2 cache miss
delays per handoff) and avoids context switching or system calls
on the critical path. However, it also wastes CPU time other
threads might have been able to use. In addition, naive spinlock
implementations create heavy traffic in the memory system and
thus interfere with computation. Finally, the OS scheduler cannot
distinguish between threads which spin and those which make for-
ward progress, leading to situations where a lock holder gets pre-
empted, only to have the new thread waste its time slice spinning.

To show how severe the problem of preempted lock holders can
be, we run a database telecommunication benchmark (TM-1) on a
64-context machine (see Section 4 for details), using a state-of-the-
art spinlock. We instrument the code to differentiate between spin-
ning due to true contention and spinning due to priority inversion.
Figure 3 shows the resulting breakdown of work. We vary the
number of threads along the x-axis, and measure CPU time spent
doing useful work, spinning due to contention, and spinning due to
priority inversion. For fewer than 64 active threads, machine utili-
zation is less than 100% and contention is low. However, as soon
as utilization passes 100% priority inversions quickly dominate,
wasting up to 85% of CPU time. It is important to note that true
contention is not the concern: at peak performance, less than 10%
of CPU time is wasted spinning on contended locks, and that frac-
tion drops rapidly when the OS scheduler preempts lock holders.

2.1 Preemption-resistant Spinlocks
Queue-based spinlocks [22][24] and to a lesser extent, ticket
locks [29], provide excellent scalability because waiting threads
form a FIFO queue and each lock handoff targets a specific thread
(“MCS” in Figure 2). Queue-based locks also give each thread its
own memory location to spin on, eliminating unnecessary coher-
ence traffic. Further, the orderly handoff is an elegant solution for
the “thundering herd” problem, where all waiting threads race for
the lock at each release and cause both contention and memory
traffic. However, the same FIFO ordering makes such algorithms
especially vulnerable to preemptions because every thread in the
queue is effectively a lock holder: A thread preempted from the
queue will almost certainly become the lock holder before it wakes
again, and other threads cannot bypass it even if it was preempted
before acquiring the lock. As a result, load must remain strictly
below 100% in order to avoid convoys.

Time-published MCS locks [15] (“TP-MCS” in Figure 2) allow
lock holders to remove preempted threads from the lock queue
instead of passing the lock to them. By only handing the lock to
running threads, time-published locks eliminate the main weakness
of queue-based spinlocks while retaining their superior scalability.
However, even with TP-MCS locks, a few extra threads in a 32-
processor system add 50-100% to the execution time of some
SPLASH-2 benchmarks [15]. This behavior arises because time-
published locks only protect the queue, leaving lock holders vul-
nerable to preemption (the results in Figure 3 are based on TP-
MCS). Preempted lock holders impact all locks which do not
cooperate with the OS scheduler, and are the focus of this work.

2.2 Backoff and Spin-then-block Hybrids
Many approaches exist to ameliorate some of the weaknesses of
spinning and blocking. Backoff-based spinning provides another
solution to the “thundering herd” problem by limiting the number
of waiting threads which can respond simultaneously. Test-and-
test-and-set with exponential backoff [1] and spin-then-yield
variants [14][27], fall into this category, with the latter removing
threads from the CPU completely. Backoff schemes suffer from a
fundamental weakness, however, in that they impose competing
objectives: Long backoffs are best for reducing wasted resources,
but shorter backoffs give the fastest response to lock handoffs. The
best tuning for backoff-based schemes does not necessarily per-
form well (see next subsection), and tuning for the general case is
challenging because the hardware, OS, application, and the num-
ber of active threads all influence the optimal balance [6].

Hybrid spin-then-block schemes [6][27] improve on backoff by
allowing the lock holder to explicitly wake waiting threads. The
capability to both sleep and wake threads allows threads to block
without timeouts, without the risk of leaving a contended lock idle.
Where spin-then-yield schemes are essentially spinlocks which use
the scheduler as a form of backoff, hybrid spin-then-block schemes
use spinning to reduce context switching imposed by a blocking
primitive. However, as with backoff, hybrid schemes can cause
undesirable side effects on load (see below). Heavyweight OS
mutex implementations usually employ spin-then-block strategies,
including the Solaris adaptive mutex [23] and the Linux futex [12].

The Solaris adaptive mutex is an advanced spin-then-block
design that minimizes the need for context switching under low
and moderate contention, and which switches to blocking under
high contention. However, as presented in Figure 1, its behavior
still leaves much room for improvement. To identify the reason
behind the lock’s poor performance we modify the TM-1 bench-

Figure 3.  Spinning: priority inversion
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In contrast to blocking, spinning or “busy waiting” schemes
(grouped on the left side of Figure 2) leave waiting threads on
CPU as they poll a memory location for changes that indicate a
lock handoff. Pure spinning is highly responsive (1-2 cache miss
delays per handoff) and avoids context switching or system calls
on the critical path. However, it also wastes CPU time other
threads might have been able to use. In addition, naive spinlock
implementations create heavy traffic in the memory system and
thus interfere with computation. Finally, the OS scheduler cannot
distinguish between threads which spin and those which make for-
ward progress, leading to situations where a lock holder gets pre-
empted, only to have the new thread waste its time slice spinning.

To show how severe the problem of preempted lock holders can
be, we run a database telecommunication benchmark (TM-1) on a
64-context machine (see Section 4 for details), using a state-of-the-
art spinlock. We instrument the code to differentiate between spin-
ning due to true contention and spinning due to priority inversion.
Figure 3 shows the resulting breakdown of work. We vary the
number of threads along the x-axis, and measure CPU time spent
doing useful work, spinning due to contention, and spinning due to
priority inversion. For fewer than 64 active threads, machine utili-
zation is less than 100% and contention is low. However, as soon
as utilization passes 100% priority inversions quickly dominate,
wasting up to 85% of CPU time. It is important to note that true
contention is not the concern: at peak performance, less than 10%
of CPU time is wasted spinning on contended locks, and that frac-
tion drops rapidly when the OS scheduler preempts lock holders.

2.1 Preemption-resistant Spinlocks
Queue-based spinlocks [22][24] and to a lesser extent, ticket
locks [29], provide excellent scalability because waiting threads
form a FIFO queue and each lock handoff targets a specific thread
(“MCS” in Figure 2). Queue-based locks also give each thread its
own memory location to spin on, eliminating unnecessary coher-
ence traffic. Further, the orderly handoff is an elegant solution for
the “thundering herd” problem, where all waiting threads race for
the lock at each release and cause both contention and memory
traffic. However, the same FIFO ordering makes such algorithms
especially vulnerable to preemptions because every thread in the
queue is effectively a lock holder: A thread preempted from the
queue will almost certainly become the lock holder before it wakes
again, and other threads cannot bypass it even if it was preempted
before acquiring the lock. As a result, load must remain strictly
below 100% in order to avoid convoys.

Time-published MCS locks [15] (“TP-MCS” in Figure 2) allow
lock holders to remove preempted threads from the lock queue
instead of passing the lock to them. By only handing the lock to
running threads, time-published locks eliminate the main weakness
of queue-based spinlocks while retaining their superior scalability.
However, even with TP-MCS locks, a few extra threads in a 32-
processor system add 50-100% to the execution time of some
SPLASH-2 benchmarks [15]. This behavior arises because time-
published locks only protect the queue, leaving lock holders vul-
nerable to preemption (the results in Figure 3 are based on TP-
MCS). Preempted lock holders impact all locks which do not
cooperate with the OS scheduler, and are the focus of this work.

2.2 Backoff and Spin-then-block Hybrids
Many approaches exist to ameliorate some of the weaknesses of
spinning and blocking. Backoff-based spinning provides another
solution to the “thundering herd” problem by limiting the number
of waiting threads which can respond simultaneously. Test-and-
test-and-set with exponential backoff [1] and spin-then-yield
variants [14][27], fall into this category, with the latter removing
threads from the CPU completely. Backoff schemes suffer from a
fundamental weakness, however, in that they impose competing
objectives: Long backoffs are best for reducing wasted resources,
but shorter backoffs give the fastest response to lock handoffs. The
best tuning for backoff-based schemes does not necessarily per-
form well (see next subsection), and tuning for the general case is
challenging because the hardware, OS, application, and the num-
ber of active threads all influence the optimal balance [6].

Hybrid spin-then-block schemes [6][27] improve on backoff by
allowing the lock holder to explicitly wake waiting threads. The
capability to both sleep and wake threads allows threads to block
without timeouts, without the risk of leaving a contended lock idle.
Where spin-then-yield schemes are essentially spinlocks which use
the scheduler as a form of backoff, hybrid spin-then-block schemes
use spinning to reduce context switching imposed by a blocking
primitive. However, as with backoff, hybrid schemes can cause
undesirable side effects on load (see below). Heavyweight OS
mutex implementations usually employ spin-then-block strategies,
including the Solaris adaptive mutex [23] and the Linux futex [12].

The Solaris adaptive mutex is an advanced spin-then-block
design that minimizes the need for context switching under low
and moderate contention, and which switches to blocking under
high contention. However, as presented in Figure 1, its behavior
still leaves much room for improvement. To identify the reason
behind the lock’s poor performance we modify the TM-1 bench-

Figure 3.  Spinning: priority inversion
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level off but remain steady as load continues to increase. Instead,
as load increases, blocking synchronization overwhelms the OS
scheduler, causing poor performance after 32 threads. Spinning
fares better at first, but as load crosses 100% its performance also
drops off drastically due to priority inversions. 

Nearly all of the challenges which arise with either spinning or
blocking are due to scheduling concerns. Spinning gives optimal
performance under light load (when no scheduling is needed), but
performs poorly under high load because preempted lock holders
trigger priority inversions. Similarly, blocking synchronization
performs badly because it potentially causes a context switch with
every lock handoff. Frequent context switching leads to scheduling
bottlenecks and adds significant overhead to the critical path. Fine-
grained synchronization aggravates the problem because it favors
frequent, short critical sections — much shorter than a context
switch — over longer and more coarse-grained ones. 

 We argue that the solution to the spinning-blocking trade-off
lies not with a more effective hybrid scheme, but in decoupling
load control from contention management. Effective contention
management uses spinning for fast lock hand-offs and does not
block in response to contention. Effective load control then pre-
vents spinning threads from causing overload while keeping load
low enough that lock holders are not preempted. We propose a
mechanism which  achieves both goals by notifying a random sub-
set of spinning threads to block in response to overload, waking
them when load drops or after a timeout of roughly one scheduler
time slice. Spinning threads are attractive targets because they can-
not make forward progress by definition, so removing them does
not hurt performance in the short term. Further, removing some
spinning threads from a loaded system ensures that lock holders
responsible for the wait are able to run, while leaving enough other
spinning threads to preserve fast lock handoffs. Finally, OS time
slicing operates normally in the absence of contention, though load
control remains active to disrupt any convoys which might arise. 

In summary, this paper makes three main contributions: 

1. We show that scheduler activity on the critical path of lock
handoffs underlies performance problems with the current
state-of-the-art in both spinning and blocking primitives.

2. We propose to decouple contention management from schedul-
ing, which moves the OS scheduler completely off the critical
path and allows applications to exploit the best properties of
spinning and blocking instead of merely trading them off. 

3. We design and implement a load control mechanism which
achieves the proposed decoupling without modifications to the
OS kernel or scheduler. For a variety of benchmarks, we
achieve peak performance for lightly loaded machines, while
retaining 85% of that peak even with 200% load (two runnable
threads per hardware context).

The rest of the paper is organized as follows. The next section
expands on the evolution of synchronization algorithms, and
related issues such as scheduling and preemption resistance.
Section 3 introduces our proposed load control mechanism and
discusses implementation issues. Sections 4-6 present and evaluate
the load control implementation. Section 7 compares load control
with alternative approaches, followed by conclusions in Section 8.

2. Managing Load and Contention

This section examines different approaches related to conflict reso-
lution for locking primitives (see Section 7 for a discussion of
alternatives to locking). We focus on locking because it is a gen-
eral-purpose and widely-utilized approach to synchronization.
Conflict resolution is necessary because threads which encounter
contention must wait for the lock to be released. As mentioned,
there are two fundamental contention management approaches —
spinning and blocking — as well as variants which extend and
combine the two to mitigate their various weaknesses. Figure 2
illustrates the space of challenges encountered in implementing
locking primitives and how solutions for these evolved; each
underlined text block is a challenge and connecting arrows are
existing solutions which attempt to overcome the challenge. 

Under blocking schemes (grouped toward the right of Figure
2), threads are descheduled in response to contention. Blocking has
the primary benefit of freeing the CPU until the waiting thread can
make progress again. As an added advantage, the scheduler can
cooperate with blocking synchronization, for example by desched-
uling threads which wait for a preempted lock. Blocking is an
expensive operation, however, because it requires two context
switches (with corresponding OS scheduling decisions), adding
10-15µs to the critical path of the system. A longer critical path
increases the likelihood that other threads will encounter conten-
tion and block, forming a vicious cycle of extremely slow lock
handoffs known as a convoy [5]. Because convoys are so damag-
ing to scalability, purely blocking contention management is only
used in uniprocessor systems where spinning leads to deadlock. 

Figure 1.  Weaknesses in state-of-the-art synchronization primi-
tives which use blocking and spinning.
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3.2.1 OS support required for load control

Load control depends on three OS facilities: the ability to (a)
schedule periodic daemon thread wakeups independent from the
system clock tick (to avoid measurement and scheduling anoma-
lies), (b) measure load accurately and with high resolution
(~100µs), and (c) deschedule and wake threads efficiently.

High-resolution timers are an effective way to wake the con-
troller thread at scheduler-independent intervals, and are widely
available as POSIX real-time extensions. To measure load, we use
the Solaris microstate accounting statistics, which have nanosec-
ond precision and include time spent on CPU and waiting in run-
queues. The statistics can be used to derive the number of CPUs
which the process would have used had they been available.
Microstate accounting has also been prototyped in at least two
Linux variants (Gelato and Carrier Grade Linux). It is also possible
to use dynamic tracing facilities such as DTrace or SystemTap (the
Linux equivalent to DTrace) to emulate microstate accounting,
though admittedly the emulation approach is cumbersome and
imposes high “probe effect” overhead (at least for the DTrace ver-
sion we tested).

In order to deschedule and wake threads efficiently we use
lightweight system call primitives available in different forms in
both Linux and Solaris. In Linux, the futex [12] system call adds
the target thread to a sleep queue associated with an arbitrary
address and forms the basis of all user-space blocking primitives.
Solaris provides a lwp_park syscall that removes the calling
thread from the OS scheduler until a lwp_unpark call from
another thread reinstates it. Unlike futex, however, lwp_park
is libc-private and requires some effort to make available to appli-
cation code. Because a real world implementation of load control
would likely reside in libc, we opt to use lwp_park for our
experiments. However, with some effort we were also able to emu-
late the syscall using per-thread pthread_mutex and
pthread_cond pairs. 

3.2.2 Implementing an effective sleep slot buffer

The sleep slot buffer has several important requirements: many
threads must be able to access it concurrently without causing
undue contention, spinning threads must be able to find available
slots efficiently, and there should be no races that leave threads
asleep during underload. The first requirement is somewhat easier
than it sounds because threads only access the buffer when there is

significant contention elsewhere already, and because the number
of threads which actually claim slots is quite limited (some hun-
dreds per second at most). Further, priority inversions are not a
problem because threads accessing the buffer are already attempt-
ing to sleep and do not hold the lock. 

To keep fast response time in the common case where no sleep
slots are available and to avoid excessive memory traffic, threads
must be able to determine quickly whether there is space in the
sleep buffer. We achieve this goal using a circular buffer imple-
mented over a large array. We maintain two counters associated
with the buffer: the number of threads which have ever slept (S),
and the number which have awoken and left (W). The controller
also maintains a sleep target (T), the number of threads which
should sleep. S serves as the head pointer of the buffer (modulo its
physical size), where threads join. There is no explicit tail pointer
because threads may leave in any order and the buffer usually con-
tains gaps. Instead, threads compute S-W < T when deciding
whether to sleep, and the controller reclaims space by scanning
from the last-known-end during each cycle as it searches for
threads to wake.  

Figure 7 (center) shows an example of the sleep buffer where
S=58 threads have ever slept and W=54 threads have since woken
and left. The four sleeping threads which remain are spread over
seven slots. Because the sleep target is T=4, the sleep buffer is cur-
rently full and no new threads will attempt to sleep. If T increases
or a thread wakes and leaves, the next thread to join the buffer will
insert itself at the arrow (above TID 4). 

3.2.3 Augmenting spinloops unobtrusively

Though the sleep slot buffer and sleep target are efficient and fairly
straightforward to implement, in the common case where conten-
tion is minor and there are no open slots in the buffer, the extra
overhead still slows down lock handoffs. For an in-order architec-
ture such as the Niagara II, the delay is especially painful because
it triggers cache misses that the hardware cannot hide, reducing
peak performance by about 10% on our benchmarks even when
load was less than 100%. One solution is to spin for some period of
time before checking the sleep target. However, this imposes the
trade-off that comes with other back-off schemes: if a thread
checks load control infrequently enough to not impact its response
to lock handoff, it does not respond as well to changing sleep tar-
gets (and vice-versa). Our solution is to manually unroll the TP-
MCS polling loop several times, placing appropriate prefetch

Figure 7.  Load controller overview: daemon algorithm (left), sleep slot buffer (center), client thread algorithm (right). S is the number of 
threads which have ever slept due to load control, and W is the number of such threads which have since woken and left; T is the number of 
sleeping threads load control targets target number of threads which should sleep. In the above example no additional threads will sleep.
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instructions and interleaving load control operations with frequent
checks for lock handoff. Though tedious, this approach allows a
thread to poll the lock and the sleep buffer at the same time.

4. Experimental Methodology

This section describes our platform and our methodology for
obtaining the different measurements reported in this paper. We
perform all experiments on a Sun T5220 “Niagara II” server with
64GB RAM, running Solaris 10. The Niagara II has 16 processor
pipelines which are shared by a total of 64 hardware contexts. This
machine offers more hardware contexts on one chip than any other
server platform currently available, giving a glimpse into the future
for all platforms as on-chip core counts rise. We implement load
control as a library which can be replaced with either time-pub-
lished spinlocks or pthread_mutex in order to simplify compari-
sons. We use DTrace [7] to capture information — such as
instantaneous load and preemptions of spinlock holders — which
would otherwise be difficult to obtain, and measure load with the
OS microstate accounting facilities. Microstate accounting uses
high-resolution timers to track precisely how much time a process
spends in various states: user, system, interrupts, blocked, waiting
for a processor, etc. Because it does not depend on sampling,
microstate accounting is immune to sampling anomalies.

In this paper, we evaluate three classes of benchmark: a series
of microbenchmarks to isolate and examine specific behaviors;
Raytrace, a member of the SPLASH-2 benchmark suite [33]; and
database transaction processing workloads executing in the open
source Shore-MT storage manager [20]. We describe each of these
in detail in the following paragraphs.

In order to isolate performance characteristics of the load con-
trol mechanism, we employ a microbenchmark modeling a
straightforward scenario: M threads running on N hardware con-
texts acquire and release repeatedly a single global lock. The “crit-
ical section” consists of a single call to gethrtime, which takes
between 40 and 80ns to execute on our machine.1 Between lock
acquires, threads busy-wait for a fixed period of time before trying
again. All threads begin executing before the first measurement
and stop after the last one. Threads increment a local counter with
each lock release, and the benchmark harness computes throughput
by comparing two successive readings of each thread’s counter
while threads continue to run.

To compare with previous work in preemption resistant
spinlocks [15] and as an example of the medium-sized applications
developers commonly encounter, we evaluate the Raytrace appli-
cation from the SPLASH-2 suite [33]. Unlike most of the bench-
marks in the suite, the load balancing in this application introduces
irregular parallelism, meaning it cannot be easily pipelined or par-
titioned in a way that eliminates all contention. This irregularity
makes it a good candidate for load control, especially since conten-
tion levels depend on thread counts, not input size. We use the
car.geo input, rendered at 1280x1024 resolution with an anti-
aliasing radius of one pixel. With these parameters and 64 active
threads the application is more than 99% parallel.2 Because runs
complete in 5 seconds or less on our machine, we report an aver-
age of six runs per data point.

Our final workload, database transaction processing, differs
significantly from the traditional parallel benchmarks because it is
large and complex (150kLoC), utilizes OS services extensively,
and exhibits fine-grained and irregular parallelism. It also repre-

sents an important class of commercial applications which are oth-
erwise underrepresented. The database server experiments employ
transactions from two benchmarks, both running within Shore-MT:
• TPC-C [31] models an online retailer which receives, pro-

cesses, and delivers orders made by customers over the Inter-
net, developed by a consortium of database, OS, and
hardware vendors. It features a mix of update transactions and
queries ranging from very small to fairly large and complex,
exhibits heavy application-level contention (from database
locks), and generates intense disk I/O.

• TM-1 (a.k.a  NDBB and TATP3) [26][18] models a cell phone
provider database and was originally developed by Nokia to
vet the offerings of database vendors. It consists of seven very
small transactions, both update and read-only. The application
exhibits little logical contention, but the workload generates
significant physical contention within the engine itself [19].

We choose these workloads because they exercise the database
engine differently. We also note that database workloads are
unusual in that they must cope with two forms of contention: trans-
actions serialize data accesses at the logical level (typically by
acquiring database locks), and threads must acquire large numbers
of mutex locks (often called “latches”) to protect the internal data
structures of the engine as it executes transactions. 

TPC-C experiments use a 100 Warehouse dataset (~13GB) and a
12GB buffer pool. Though the workload is memory-resident on
our machine, it still generates a heavy stream of random writes to
disk because all updates must eventually be flushed disk for dura-
bility. The stream easily overwhelms our 48-disk array, so we
place both the database and log files in tmpfs, then use Shore-MT’s
fake I/O latency setting to force each “disk request” to take at least
6msec. All requests thus proceed in parallel, but with latency as if
from a random seek by one of many disk heads in a very large disk
array. TM-1 uses a 100,000 subscriber dataset (~200MB), also
with all files in tmpfs. However, TM-1 is not I/O-intensive and
disk performance does not affect it strongly.

1. We break with the tradition of accessing N cache lines because con-
tended data can be accessed very quickly thanks to a shared L2 cache.

2. Replacing the custom memory allocator in Raytrace with Solaris’
threaded malloc eliminates previously-reported scalability problems.

Figure 8.  Response to a fixed-timing pattern of control output.

3. TM-1 became NDBB, which in turn became TATP while this paper
was under review. The earlier two benchmarks have since disappeared.
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5. Evaluating Load Control

In the subsections which follow we analyze the behavior of load
control using the microbenchmarks and applications introduced in
Section 4. We begin by evaluating the potential of load control,
then show its impact on full applications, and discuss special cases.

5.1 Response to Control (“Bump test”)
In order for load control to be effective, the system must respond
quickly and predictably to changes in the control output. For
example, the load-triggered backoff scheme we discussed earlier
suffers from unpredictable system response as the sleep target
changes. In contrast, Figure 8 illustrates the effectiveness of our
proposed approach using a “bump test” which modifies the sleep
target of our microbenchmark in a fixed pattern over time. A con-
trollable system will respond to sudden changes in control with a
fast and proportional (predictable) change in its steady state behav-
ior. As the figure shows, every change in the sleep target results in
an immediate adjustment to the number of active threads. The first
thread responds within 30µs of a change and the system has stabi-
lized at the new thread count within 200µs. These results indicate
that the control mechanism is sound, assuming we can update the
sleep target accurately and often enough (see Section 5.3).

5.2 Effectiveness as Contention Levels Vary
Because load control can only remove spinning threads from the
system, the amount of contention in the system impacts the respon-
siveness of load control. Though low contention leads to little
spinning and a small pool of suitable victim threads, load control
remains effective for two reasons. First, normal OS scheduling
causes very few priority inversions in the absence of contention,
and load control has no need for victim threads. In the more com-
mon case of locks which are heavily used but not contended, pre-
empting a lock holder triggers priority inversion which produces
spinning threads for load control to work with. 

Figure 9 demonstrates this effect using a microbenchmark
where threads contend for a single global lock, with a fixed delay
between requests. High contention occurs for short requests on the
left of the x-axis and drops off moving toward the right. We con-
sider three cases, the base case where the machine is 95% loaded
(61 threads) as well as 150% loaded machine (96 threads) both
with and without load control. As we move right along the x-axis,
decreasing contention leads to two effects. First, the 95% loaded
system quickly reaches a state of low contention where throughput
is determined only by the number of active threads, not the amount
of time they spend holding the lock. Second, for the overloaded

case, less time spent in critical sections means a lower probability
of a preemption catching a lock holder, steadily reducing the per-
formance penalty due to priority inversions. With extremely high
contention (the 12µs case), load control is less effective because
lock holders are preempted too often. Even though load control
responds quickly by removing a spinning thread, the lock holder
must still be rescheduled, leading to roughly a 12µs delay on the
critical path. Overall, however, we see a significant benefit from
load control over a wide range of contention levels.

5.3 Sensitivity to Controller Update Rate
We have already seen that load control has response times in the
tens of µs. However, the control output must also be accurate and
timely or the system will respond faithfully to unhelpful load tar-
gets. For example, if load has dropped back to normal by the time
load control registers a load spike, too many threads will sleep and
causing underutilization of the machine. On the other hand, updat-
ing the load control target requires an expensive syscall, and doing
so too often hurts performance. Figure 10 illustrates the trade-off
between timeliness and overhead as we execute TM-1 and vary the
load control update interval along the x-axis. The y-axis gives sys-
tem throughput for 98%, 110%, and 150% load (63, 72, and 96
threads, respectively) with load control active. For extremely fre-
quent load measurements, high overhead slows all three cases. The
cost increases with load because the Solaris traverses every thread
in the process for each load measurement. In the middle region (3-
10ms), the benefits of load control outweigh the overheads, except
for the 98% load, which sees only the overhead. Finally, as the
interval increases past 10ms (the system tick interval), load control
makes poor decisions due to stale data. In order to maximize per-
formance for all load factors, we set the update interval to 7msec
for our experiments.

5.4 Graceful Degradation Under High Load
The most important measure of load control is its performance as
the number of threads in the system increases. Ideally, the extra
threads would not change the throughput of the system, through
per-thread throughput would necessarily drop. In practice, context
switching is not free and preemptions still occur occasionally, lead-
ing to a gradual drop in performance as load continues to rise. The
goal is therefore to allow performance to degrade gracefully,
depending on admission control to keep load from going so high as
to exhaust system resources. Figure 11 compares the performance
of Raytrace, TM-1, and TPC-C as load varies from near-idle to
overloaded (128 threads). Results for each application are clus-

Figure 9.  Impact of varying contention for 95% and 150% load.
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tered together, with throughput given for pthreads, TP-MCS, and
load control as different colors.

As the figure shows, with TP-MCS Raytrace outperforms the
standard pthread_mutex by a wide margin as long as load remains
under 100%, corroborating prior findings that heavyweight OS
mutex locks are ill-suited for high-performance computing. How-
ever, even with preemption resistance, the priority inversions
which afflict all spin-based primitives quickly destroy perfor-
mance. At the highest load shown in the figure the spinlock loses
more than 60% of its peak performance. In contrast, load control
makes spinlocks perform far better, with a slight advantage over
TP-MCS even for load below 100% as the OS will occasionally
preempt threads to allow other processes to run. The results for
TM-1 are similar to Raytrace, except single-thread performance is
unaffected by the higher cost of acquiring the OS mutex compared
to a lightweight spinlock. This occurs because the database engine
spends less time inside critical sections. However, TM-1 is still
highly sensitive to preemption, leading to the same poor perfor-
mance as spinning without load control to protect it.

For TPC-C, the high levels of application-level contention
reduce significantly the pressure on internal mutex locks because
threads block frequently on database locks instead. As a result, the
system becomes less sensitive to preemptions, and the TP-MCS
lock provides acceptable performance even near 150% load. For
the same reason, pthread_mutex does not become overloaded and
performs as well as load control. This is also to be expected,
because an adaptive mutex under low contention is just a spinlock
with the ability to deschedule spinning threads if the lock holder is
preempted — the same effect load control provides. We verified
that the behavior is due to contention for database locks by remov-
ing the badly behaved Delivery transaction from the workload mix.
Doing so boosted performance significantly, eliminated nearly all
variance in throughput, and made all synchronization approaches
behave similarly to TM-1.

Overall, load control allows spinning to perform well for a
wide variety of application behaviors and load levels. It imposes
virtually no overhead for light load while preserving performance
as load passes 100%. Even for the highest loads, load control
maintains 85-92% of peak performance, making spinning a viable
approach to contention management. In fact, load control is so
effective that replacing the preemption-resistant TP-MCS with a
standard MCS lock gives only a minor performance penalty, con-
firming that destructive convoys are no longer able to form.

5.5 Interference from Other Processes
In an unmanaged system where processes receive CPU time based
on the number of runnable threads they produce, load control
potentially puts its host process at a disadvantage compared to pro-
cesses which do not use it. The worry is that a load-controlled pro-
cess will detect an overload due to some other process and respond
by putting its own threads to sleep. In the worst case, a load-con-
trolled process would gradually disappear as more and more of its
threads sleep in response to outside pressure. In order to quantify
this risk we run two TM-1 benchmarks at the same time, forcing
them to compete for processor time. 

Figure 12 shows the outcome of the following scenario: Sup-
pose process “self” uses 100% of the machine’s processing power
and applies load control. When process “other” appears and com-
petes with “self” for CPU time, it should not be able to cause star-
vation, regardless of who uses load control. We vary the number of
runnable threads in “other” along the x-axis and plot the resulting
throughput for both processes. Each pair of bars shows the effect
when “other” does not or does use load control. As expected, com-
petition from “other” reduces the throughput “self” can achieve,
but it turns out that load control is relatively safe from adversaries.
When both processes use load control they share the system quite
effectively, with only a 10-15% drop in aggregate performance and
a reasonable balance of power. Even when “other” does not use
load control at all and creates excessive numbers of threads, “self”
still retains roughly 35% of its peak performance while “other”
suffers low performance due to priority inversions. 

The robustness of load control in the face of external processes
leads us to conclude that, for normal competition, load control
poses little risk to a process. However, if an adversary were to cre-
ate a process whose only purpose is to consume CPU time (with no
regard for its own performance), load control is somewhat vulnera-
ble. However, we note that this vulnerability exists independent of
load control, and has a straightforward solution. All operating sys-
tems provide mechanisms for isolating processes from each other,
including processor sets, usage caps, and priority schemes. Any
mechanism which ensures a process receives CPU time indepen-
dent of the number of threads other processes create will prevent
adversarial processes from pushing an important process off CPU,
whether the latter uses load control or not.

6. Discussion

The previous section demonstrates that load control provides an
effective way to manage heavy load without resorting to blocking

Figure 11.  Application performance as the thread count varies (64 threads is 100% load).
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LIMITATIONS

• large, transient changes in load

• apply some control theory

• nested critical sections

• load measurement cost linear in thread count

• load-change notification instead of polling



CONCLUSION

• unwanted interaction between scheduling and contention 
management lead to poor performance

• decouple the two

• use spinning in response to contention

• use blocking to control the number of runnable threads

• implementation is transparent to the application



DISCUSSION

• Did you fully understand the presented algorithm?

• What about the increased energy consumption due to 
spinning?

• Do state-of-the-art spinlocks use MONITOR-MWAIT?

• Is this an argument for parallelism, where the number of 
threads is determined by the OS, not the application?


