
PROTECTION IN THE BIRLIX
OPERATING SYSTEM
Oliver C. Kowalski Hermann Härtig

SECURITY QUESTION

Is a given subject allowed to perform an
operation on a given object?

OUTLINE

➊ protection paradigm at „user interface“ level

➋ the implementation in BirliX
(and a BirliX walkthrough while we’re at it)

PROTECTION MECHANISMS

widely used limited ACLs (aka POSIX)

• entities acting as subjects are attributed to a principal (human)

• objects maintain a list of subjects and their rights

pure ACLs

• individual program instances as subjects

• not practicable with short-living subjects

COMBINATION

f systems only allow entries with respect to user or group of users in their
acl. In comparison with this ‘pure acl’s’ as presented in [15, 111 allows
entries with respect to instances of programs.
Both versions of ad’s have inherent disadvantages. Individual entries,
as introduced in the pure concept have the advantage of supporting
a least pnuilege policy [21], but on the other hand they have the dis-
advantage that users have to know all the names of those subjects
which should be allowed t o get access to their objects. In a system
with short-living subjects (e.g. Unix processes) this is not practicable.
The user-entries support a simplifying view of the users of a system.
Normally users are interested in which users should have what kind
of access to their objects. This implies the stinging disadvantage, the
violation of the least privilege policy. If user U has access to object 0,
then every subject s acting on behalf of him holds the same rights on
0, regardless whether i t needs this privilege or not.
In practice both user- and individual-entries are not sufficient for a
usable acl mechanism. Consider the example of a simple game called
t r i a l which manages a score-table, named highscore, containing the
best t r i a l player. The player needs manipulating access to the object
highscore, but only a successful player should be inserted. User-entries
cannot be used, because every user appearing in the acl may manipulate
the score-table directly by using an editor, for example. Instance-entries
cannot be used, because it is not possible to know in advance the names
of all trial instances. We call this problem the delegation problem. The
Unix system offers the seluid mechanism [I91 to solve such problems. A
pseudo user, let’s call him t r i a l u s r is defined, and t r i a l is installed
as a setuid program, belonging to t r i a l u s r . Also highscore belongs
to t r i a l u s r . He is the only one to whom a write access is granted.
Whenever a user wants to play t r i a l , he executes the program and
thus will act as the user t r i a l u s r and therefore has access to the
score-table. But with this mechanism, the process executing t r i a l is
able to access all objects to which t r i a l u s r has access. In general it
is not practical to create a new user for each application which uses
the setuid mechanism. So this mechanism tends to violate the least
privilege policy.
Instead of using a mechanism like the setuid mechanism, BirliX intro-
duces a new kind of acl-entry concerning programs, called the type-
entry. On installing t r ia l and highscore, the installing user adds
t r i a l in the acl of highscore with the permission to manipulate the
score-table. No other entry has to be added to the acl. Now each in-
stance of t r i a l has the necessary rights to maintain the score-table.
The Unix system has some other examples, like the setuid-programs
passvd and chsh. Using type-entries makes the setuid mechanism ob-
solete.
Type-entries are capable of solving the delegation problem. But as long
as user-entries are supported by an acl system, the acl alone is not a
sufficient security mechanism because of the violation of the least privi-
lege policy. In that case, a mechanism is needed to specify access rights
not only from the point of view of objects (called object protection or
object view in the following), but also from the point of view of sub-
jects. Subjects, suspect of being Trojan horses (61, must be restricted in
their access rights to the minimum number of objects they need (called
subject res tnc t ion or sublect restriction list in the following). Subject
restrict.ions can be looked at as capabilities at the user level interface.
The obvious question arises: Why using two different mechanisms, acl’s
and subject restrictions? The reason for this are the two complemen-
tary views of the users installing and instantiating entities (see sec-
tion 4.2) . If only acl’s are supported by the system, whenever a new
suspect subject is added to the system, all acl’s have to be scanned if
they would allow the subject to access the corresponding object.
Beside the access control list mechanisms, which allow users to define
the protection domains for their objects, another mechanism is needed

Figure 1: Subject restriction and object protection

to determine responsibility for actions inside a system. This mecha-
nism can be used for tracing back violation attempts to the imposed
security policy or t o build application specific security policies. As an
example look at a software configuration management system providing
operations to make changes to a large software system. Since there are
no means to decide if a given program is for example a Trojan horse,
a security policy makes sense to trace back changes to the responsible
programmer. Thus the configuration management system can enforce
a policy to maintain a list of changes and the responsible programmer.
As a first conclusion, we need fine-grained object protection because
of the delegation problem. Even in the presence of fine-grained ob-
ject protection we need subject restrictions as complementary means
to build small domains because of Trojan horses. To trace back viola-
tion and t o build protection policies on our own, we need traceability.
To enable traceability, a foolproof way of identifying subjects is needed,
which leads to the selection of the authentrcation class of implementa-
tion level mechanisms. If we want to take programs and processes into
acl’s, those must be authentic too. While authentication of subjects
is sufficient to provide object protection, a way of filtering messages
coming from suspect subjects is still needed.

3 BirliX Overview

Though we assume that acl’s and subject restrictions can be part of
other operating systems as well, the following more precise description
and implementation is based on the BirliX kernel. Its architecture has
been tailored to support these.
The key design principle in the BirliX system is the data abstraction.
The system is basically an abstract data type (adt) management system
with services to define and instantiate persistent types, to identify types
and instances (i-adt’s) and to support communication between i-adt’s.
Common properties of all adt’s concerning distribution, security and
fault tolerance are defined by a primary type and inherited whenever a
new adt is defined. A very natural feature of an adt management system
is the functional extensibility and adaptability to new requirements by
the definition of new adt’s.
The abstract data type paradigm provides us with the smallest unit
of identification and communication, the i-adt. BirliX application prc-
grams are sets of i-adt’s, distributed among several nodes in a computer
network. I-adt’s are identified and h a t e d by a distributed naming and
locating service that efficiently maps high level names from a network
global hierarchical name space to i-adt’s. I-adt’s communicate using a
network transparent RPC in client/agent relationship. At the applica-
tion level, a computer network of BirliX hosts is a single large system
providing computing resources without regard to the multiplicity and
distribution of the machines which actually provide the resources.
The homogeneous system interface based on the abstract data type
paradigm is implemented via a homogeneous system design. The nam-
ing facilities provide type independent naming and locating services

161

Authorized licensed use limited to: SAECHSISCHE STAATS UND LANDESBIBLIOTHEK. Downloaded on July 02,2010 at 07:11:44 UTC from IEEE Xplore. Restrictions apply.

BIRLIX

BirliX terminology The Real World™
abstract data type (ADT) service, IDL

type description server program
ADT instance (iADT) running server

team process, task
team manager init, launchd

agent client thread
native cleanup thread, garbage collector

bindings sessions
passive team persistent snapshot

user representative (URep) login

DISCUSSION

• relevance and novelty of BirliX concepts

•What have we learned since then? Have protection
mechanisms improved?

• Is the combination of object protection and subject restriction
the right compromise for usable security?

• „… in the second case it’s a cryptographic seal. With this a
user is able to grant trust to a workstation.“ Really?

