
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Cooperative I/O: A novel I/O
semantics for energy-aware
applications

–Dresden, 2010-07-13

Andreas Weißel, Björn Beutel, Frank Bellosa

Motivation

• Energy-aware computing
– Mobile devices / notebooks:

enhance battery lifetime
– Servers: limit energy cost

• Focus (<2002): OS-level improvements
– Turn off devices / CPUs
– Problems:

• power management cost
• advance knowledge needed

Power-saving hard disks

• ATA defines 4 power modes (active, idle,
standby, sleep)

• Switching between modes costs energy

• Decision when to switch depends on the
estimated power savings

– Device-specific break-even point
 makes OS-level decisions hard→

Cooperative I/O

• Idea: applications give hints to OS

• Timeout: how long can I wait until the
request must be started?

– Example: video player filling a buffer

• Cancel: Drop request if timeout is reached?
– Example: Auto-save in text editor

Whole-system integration

Cooperative file operations

• New Linux system calls:
– coop_open
– coop_read
– coop_write

• Buffer cache updates easy for reading
– If disk is in low-power mode, wait until

timeout occurs or another request spins
up the disk.

– If timeout hits and cancel flag is set,
cancel.

Cooperative writing

• write() usually works on buffer cache
• In-kernel update thread to write back dirty

buffers to disk
– Make this task cooperative

• 1st problem: writing may induce a read op

• 2nd problem: cancellation of a write-induced
read after multiple modifications within the
cache → need transactional semantics

Early commit strategy

• Instead of implementing transactions, try
to commit write ops as early as possible

• Wait until another request spins up disk
and then write back dirty buffers
immediately

• If timeout hits, read cancel flag
– Cancel

 no other buffers? drop all dirty buffer→
 other buffers? write back w/ others→

– No cancel write back all dirty buffers→

Drive-specific cooperative update

• Write request batching

• Write back all dirty buffers every period

• Piggy-back on read requests

• Updates performed per drive

• Write back before switching to low-power
mode

Implementation in Linux

• Modifications to
– VFS
– Ext2
– Block layer
– IDE driver

• Energy is a cross-cutting concern.

 OR

Break-up all the nice abstractions.

Determining disk break-even

IDLE

Shut down Power up write

standby

IBM Travelstar 15GN
break-even time = 8.7s

Power saving policies: MP3 player

Power saving policies: µ-benchmark

Slide 14 von MAXNR

Discussion

• Do the examples given require a solution as
complex as this one?

– Auto save increase fsync period at user →
level?

– Cron jobs etc. i/o priorities?→

• Are the examples valid?
– Media player filling buffer wants to →

specify when the request is completed,
not when it is sent.

• Is this viable to implement for all available
device classes and protocol stacks?

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

