
Department of Computer Science Institute of System Architecture, Operating Systems Group

CARSTEN WEINHOLD

EIO: ERROR CHECKING IS
OCCASIONALLY CORRECT
HARYADI S. GUNAWI, CINDY RUBIO-GONZÁLEZ, ANDREA C.
ARPACI-DUSSEAU, REMZI H. ARPACI-DUSSEAU, BEN LIBLIT

TU Dresden EIO: Error Checking is Occasionally Correct

MOTIVATION
■ File and storage systems must be robust

■ Previous research: „file systems are [...]
unreliable when the underlying disk system
does not behave as expected“

■ Requirement: comprehensive recovery
policies need correct error reporting

■ Reality: error propagation often incorrect

■ Paper presents analysis error propagation in
Linux code

2

TU Dresden EIO: Error Checking is Occasionally Correct

EDP: APPROACH
■ Error Detection and Propagation (EDP):

■ Static analysis of dataflow (error codes)

■ Uses source-to-source transformation

■ Tracks error propagation through call stacks

■ Used to analyze Linux 2.6.15.4 source:

■ VFS, memory management

■ All file systems (ext3, XFS, NFS, VFAT, ...)

■ SCSI, IDE, soft RAID storage subsystems
3

TU Dresden EIO: Error Checking is Occasionally Correct

EDP: CHANNELS
■ Basic abstraction: channels

■ Set of function calls

■ Generation endpoint:
error first exposed

■ Termination endpoint:
end of error propagation

■ Propagating functions in
between

4

journal_recover

sync_blockdev

filemap_fdatawait filemap_fdatawrite

journal_recover()
/* BROKEN CHANNEL */
sync_blockdev();

sync_blockdev()
ret = fm_fdatawrite();
err = fm_fdatawait();
if(!ret) ret = err;
/* PROPAGATE EIO */
return ret;

Figure 5: Silent error in journal recovery. In the figure
on the left, EDP marks journal recover as a termination
endpoint of a broken channel. The code snippet on the right
shows that journal recover ignores the EIO propagated
by sync blockdev.

To ensure that the number of false positives we report
is not overly large, we manually analyze all of the code
snippets to check whether a second error code is being
checked. Note that this manual process can be automated
if we incorporate all types of error codes into EDP. We
have found only a total of 39 false positives, which have
been excluded from the numbers we report in this paper.
Thus, the high numbers in Table 2 provide a hint to a real
and critical problem.

3.2 Silent Failures: Manifestations of
Unsaved Error Codes

To show that unsaved error codes represent a serious
problem that can lead to silent failures, we injected disk
block failures in a few cases. As shown in Figure 5,
one serious silent failure arises during file system recov-
ery: the journaling block device layer (JBD) does not
properly propagate any block write failures, including in-
ode, directory, bitmap, superblock, and other block write
failures. EDP unearths these silent failures by pinpoint-
ing the journal recover function, which is responsi-
ble for file system recovery, as it calls sync blockdev
to flush the dirty buffer pages owned by the block de-
vice. Unfortunately, journal recover does not save
the error code propagated by sync blockdev in the case
of block write failures. This is an example where the
error code is dropped in the middle of its propagation
chain; sync blockdev correctly propagates the EIO er-
ror codes received from the two function calls it makes.

A similar problem occurs in the NFS server code.
From a similar failure injection experiment, we found
that the NFS client is not informed when a write fail-
ure occurs during a sync operation. In the experiment,
the client updates old data and then sends a sync oper-
ation with the data to the NFS server. The NFS server
then invokes the nfsd dosync operation, which mainly
performs three operations similar to the sync blockdev
call above. First, the NFS server writes dirty pages to the
disk; second, it writes dirty inodes and the superblock
to disk; third, it waits until the ongoing I/O data transfer

terminates. All these three operations could return er-
ror codes, but the implementation of nfsd dosync does
not save any return values. As a result, the NFS client
will never notice any disk write failures occurring in the
server. Thus, even a careful, error-robust client cannot
trust the server to inform it of errors that occur.

In the NFS server code, we might expect that at least
one return value would be saved and checked properly.
However, no return values are saved, leading one to ques-
tion whether the returned error codes from the write
or sync operations are correctly handled in general. It
could be the case that the developers are not concerned
about write failures. We investigate this hypothesis in
Section 4.2.

3.3 Unchecked Error Code
Lastly, we report the number of error-broken channels
due to a variable that contains an error code not being
checked or used in the future. For example, in the IBM
JFS code below, rc carries an error code propagated
from txCommit (line 4), but rc is never checked.

1 // jfs/jfs_txnmgr.c
2 int jfs_sync () {
3 int rc;
4 rc = txCommit(); // UNCHECKED ’rc’
5 // No usage or check of ’rc’
6 // after this line
7 }

This analysis can also report false positives due to the
double error code problem described previously. In ad-
dition, we also find the problem of overloaded variables
that contribute as false positives. We define a variable to
be overloaded if the variable could contain an error code
or a data value. For instance, blknum in the QNX4 code
below is an example of an overloaded variable:

1 // qnx4/dir.c
2 int qnx4_readdir () {
3 int blknum;
4 struct buffer_head *bh;
5 blknum = qnx4_block_map();
6 bh = sb_bread (blknum);
7 if (bh == NULL)
8 // error
9 }

In this code, qnx4 block map could return an er-
ror code (line 5), which is usually a negative value.
sb bread takes a block number and returns a buffer head
that contains the data for that particular block (line 6).
Since a negative block number will lead to a NULL buffer
head (line 7), the error code stored in blknum does not
have to be explicitly checked. The developer believes
that the other part of the code will catch this error or
eventually raise related errors. This practice reduces the
accuracy of our static analysis.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association216

Viol# Caller → Callee Filename Line#
A file lookup find init inode.c 493
B fill super find init super.c 385
C lookup find init dir.c 30
D brec updt prnt brec find brec.c 405
E brec updt prnt brec find brec.c 345
F cat delete free fork catalog.c 228
G cat delete find init catalog.c 213
H cat create find init catalog.c 95
I file trunc free exts extent.c 507
J file trunc free exts extent.c 497
K file trunc find init extent.c 494
L ext write ext find init extent.c 135
M ext read ext find init extent.c 188
N brec rmv brec find brec.c 193
O readdir find init dir.c 68
P cat move find init catalog.c 280
Q brec insert brec find brec.c 145
R free fork free exts extent.c 307
S free fork find init extent.c 301

LEGEND

function Error-broken
 termination endpoint

function
Generation endpoint

function Propagate function
and generation endpoint

function
Propagate function
or error-complete

 termination endpoint

B

A
Function A calls
 function B (and
 error-code flows

 from B to A)

Error channel

Broken channel
(tagged with

violation label)

Viol #

0 1 2 3 4 5 6 7

free_exts__ext_read_ext

brec_find

__brec_find

bmap_alloc

extend_file

ext_read_ext add_ext

brec_read

get_blocks

get_block

file_lookup

find_init

Apart_find

fill_super

B

cat_find_brecmdb_get

get_last_sess

lookup

C

brec_gotobrec_updt_prnt

DE

__ext_write_ext

cat_delete

G

free_fork

F

R

Sgetxattr setxattrcat_create

H

file_trunc

IJ

K

__ext_cache_ext

write_inode

M

ext_write_ext

L

mkdir

rmdirunlink

create

brec_rmv

N

rename

cat_move

P

readdir

O

brec_insert

Q

Figure 2: A Sample of EDP Output. The lower figure depicts the EDP output for the HFS file system. Some function names
have been shortened to improve readability. As summarized in the upper right legend, a gray node with a thicker border represents
a function that generates an error code. The other gray node represents the same thing, but the function also propagates the error
code received from its callee. A white node represents a good function, i.e. it either propagates the error code to its caller or
if it does not propagate the error code it minimally checks the error code. A black node represents an error-broken termination
endpoint, i.e. it is a function that commits the violation of unsaved error codes. The darker and thicker edge coming out from a
black node implies a broken error channel (a bad call); an error code actually flows from its callee, but the caller drops the error
code. For ease of debugging, each bad call is labeled with a violation number whose detailed information can be found in the upper
left violation table. For example, violation #E found in the bottom left corner of the graph is a bad call made by brec updt prnt
when calling brec find, which can be located in fs/hfs/brec.c line 345.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 211

Viol# Caller → Callee Filename Line#
A file lookup find init inode.c 493
B fill super find init super.c 385
C lookup find init dir.c 30
D brec updt prnt brec find brec.c 405
E brec updt prnt brec find brec.c 345
F cat delete free fork catalog.c 228
G cat delete find init catalog.c 213
H cat create find init catalog.c 95
I file trunc free exts extent.c 507
J file trunc free exts extent.c 497
K file trunc find init extent.c 494
L ext write ext find init extent.c 135
M ext read ext find init extent.c 188
N brec rmv brec find brec.c 193
O readdir find init dir.c 68
P cat move find init catalog.c 280
Q brec insert brec find brec.c 145
R free fork free exts extent.c 307
S free fork find init extent.c 301

LEGEND

function Error-broken
 termination endpoint

function
Generation endpoint

function Propagate function
and generation endpoint

function
Propagate function
or error-complete

 termination endpoint

B

A
Function A calls
 function B (and
 error-code flows

 from B to A)

Error channel

Broken channel
(tagged with

violation label)

Viol #

0 1 2 3 4 5 6 7

free_exts__ext_read_ext

brec_find

__brec_find

bmap_alloc

extend_file

ext_read_ext add_ext

brec_read

get_blocks

get_block

file_lookup

find_init

Apart_find

fill_super

B

cat_find_brecmdb_get

get_last_sess

lookup

C

brec_gotobrec_updt_prnt

DE

__ext_write_ext

cat_delete

G

free_fork

F

R

Sgetxattr setxattrcat_create

H

file_trunc

IJ

K

__ext_cache_ext

write_inode

M

ext_write_ext

L

mkdir

rmdirunlink

create

brec_rmv

N

rename

cat_move

P

readdir

O

brec_insert

Q

Figure 2: A Sample of EDP Output. The lower figure depicts the EDP output for the HFS file system. Some function names
have been shortened to improve readability. As summarized in the upper right legend, a gray node with a thicker border represents
a function that generates an error code. The other gray node represents the same thing, but the function also propagates the error
code received from its callee. A white node represents a good function, i.e. it either propagates the error code to its caller or
if it does not propagate the error code it minimally checks the error code. A black node represents an error-broken termination
endpoint, i.e. it is a function that commits the violation of unsaved error codes. The darker and thicker edge coming out from a
black node implies a broken error channel (a bad call); an error code actually flows from its callee, but the caller drops the error
code. For ease of debugging, each bad call is labeled with a violation number whose detailed information can be found in the upper
left violation table. For example, violation #E found in the bottom left corner of the graph is a bad call made by brec updt prnt
when calling brec find, which can be located in fs/hfs/brec.c line 345.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 211

...

Viol# Caller → Callee Filename Line#
A file lookup find init inode.c 493
B fill super find init super.c 385
C lookup find init dir.c 30
D brec updt prnt brec find brec.c 405
E brec updt prnt brec find brec.c 345
F cat delete free fork catalog.c 228
G cat delete find init catalog.c 213
H cat create find init catalog.c 95
I file trunc free exts extent.c 507
J file trunc free exts extent.c 497
K file trunc find init extent.c 494
L ext write ext find init extent.c 135
M ext read ext find init extent.c 188
N brec rmv brec find brec.c 193
O readdir find init dir.c 68
P cat move find init catalog.c 280
Q brec insert brec find brec.c 145
R free fork free exts extent.c 307
S free fork find init extent.c 301

LEGEND

function Error-broken
 termination endpoint

function
Generation endpoint

function Propagate function
and generation endpoint

function
Propagate function
or error-complete

 termination endpoint

B

A
Function A calls
 function B (and
 error-code flows

 from B to A)

Error channel

Broken channel
(tagged with

violation label)

Viol #

0 1 2 3 4 5 6 7

free_exts__ext_read_ext

brec_find

__brec_find

bmap_alloc

extend_file

ext_read_ext add_ext

brec_read

get_blocks

get_block

file_lookup

find_init

Apart_find

fill_super

B

cat_find_brecmdb_get

get_last_sess

lookup

C

brec_gotobrec_updt_prnt

DE

__ext_write_ext

cat_delete

G

free_fork

F

R

Sgetxattr setxattrcat_create

H

file_trunc

IJ

K

__ext_cache_ext

write_inode

M

ext_write_ext

L

mkdir

rmdirunlink

create

brec_rmv

N

rename

cat_move

P

readdir

O

brec_insert

Q

Figure 2: A Sample of EDP Output. The lower figure depicts the EDP output for the HFS file system. Some function names
have been shortened to improve readability. As summarized in the upper right legend, a gray node with a thicker border represents
a function that generates an error code. The other gray node represents the same thing, but the function also propagates the error
code received from its callee. A white node represents a good function, i.e. it either propagates the error code to its caller or
if it does not propagate the error code it minimally checks the error code. A black node represents an error-broken termination
endpoint, i.e. it is a function that commits the violation of unsaved error codes. The darker and thicker edge coming out from a
black node implies a broken error channel (a bad call); an error code actually flows from its callee, but the caller drops the error
code. For ease of debugging, each bad call is labeled with a violation number whose detailed information can be found in the upper
left violation table. For example, violation #E found in the bottom left corner of the graph is a bad call made by brec updt prnt
when calling brec find, which can be located in fs/hfs/brec.c line 345.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 211

TU Dresden EIO: Error Checking is Occasionally Correct

EDP: TOOL

5

2.2.2 Channel Construction
The second component of EDP constructs the channel
in which the specified error codes propagate. A channel
can be constructed from function calls and asynchronous
wake-up paths; in our current analysis, we focus only
on function calls and discuss asynchronous paths in Sec-
tion 5.3.

We define a channel by its two endpoints: generation
and termination. The generation endpoint is the func-
tion that exposes an error code, either directly through
a return value (e.g., the function contains a return
-EIO statement) or indirectly through a function argu-
ment passed by reference. After finding all generation
endpoints, EDP marks each function that propagates the
error codes; propagating functions receive error codes
from the functions that they call and then simply prop-
agate them in a return value or function parameter. The
termination endpoint is the function in which an error
code is no longer propagated in the return value or a pa-
rameter of the function.

One of the major challenges we address when con-
structing error channels is handling function pointers.
The typical approach for handling function pointers is
to implement a points-to analysis [13] that identifies the
set of real functions each function pointer might point
at; however, field-sensitive points-to analyses can be ex-
pensive. Therefore, we customize our points-to analysis
to exploit the systematic structure that these pointers ex-
hibit.

First, we keep track of all structures that have function
pointers. For example, the VFS read and write interfaces
are defined as fields in the file ops structure:

struct file_ops {
int (*read) ();
int (*write) ();

};

Since each file system needs to define its own
file ops, we automatically find all global instances of
such structures, look for the function pointer assignments
within the instances, and map function-pointer imple-
mentations to the function pointer interfaces. For exam-
ple, ext2 and ext3 define their file operations like this:

struct file_ops ext2_f_ops {
.read = ext2_read;
.write = ext2_write;

};
struct file_ops ext3_f_ops {

.read = ext3_read;

.write = ext3_write;
};

Given such global structure instances, we add the in-
terface implementations (e.g., ext2 read) to the im-
plementation list of the corresponding interfaces (e.g.,

file ops→read). Although this technique connects
most of the mappings, a function pointer assignment
could still occur in an instruction rather than in a global
structure instance. Thus, our tool also visits all functions
and finds any assignment that maps an implementation to
an interface. For example, if we find an assignment such
as f op->read = ntfs read, then we add ntfs read
to the list of file ops→read implementations.

In the last phase, we change function pointer calls to
direct calls. For example, if VFS makes an interface call
such as (f op->read)(), then we automatically rewrite
such an assignment to:

switch (...) {
case ext2: ext2_read(); break;
case ext3: ext3_read(); break;
case ntfs: ntfs_read(); break;
...

}

Across all Linux file systems and storage de-
vice drivers, there are 191 structural interfaces (e.g.,
file ops), 904 function pointer fields (e.g., read),
5039 implementations (e.g., ext2 read), and 2685
function pointer calls (e.g., (f op->read)()). Out of
2865 function pointer calls, we connect all except 564
calls (20%). The unconnected 20% of calls are due to in-
direct implementation assignment. For example, we can-
not map assignment such as f op->read = f, where f
is either a local variable or a function parameter, and not
a function name. While it is feasible to traceback such
assignments using stronger and more expensive analy-
sis, we assume that major interfaces linking modules to-
gether have already been connected as part of global in-
stances. If all calls are connected, more error propagation
chain can be analyzed, which means more violations are
likely to be found.

2.2.3 Channel Analysis

The third component of EDP distinguishes two kinds
of channels: error-complete and error-broken channels.
An error-complete channel is a channel that minimally
checks the occurrence of an error. An error-complete
channel thus has this property at its termination endpoint:

∃ if (expr) { ... }, where

errorCodeV ariable ⊆ expr

which states that an error code is considered checked if
there exist an if condition whose expression contains
the variable that stores the error code. For example, the
function goodTerminationEndpoint in the code seg-
ment below carries an error-complete channel because
the function saves the returned error code (line 2) and
checks the error code (line 3):

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 209

2.2.2 Channel Construction
The second component of EDP constructs the channel
in which the specified error codes propagate. A channel
can be constructed from function calls and asynchronous
wake-up paths; in our current analysis, we focus only
on function calls and discuss asynchronous paths in Sec-
tion 5.3.

We define a channel by its two endpoints: generation
and termination. The generation endpoint is the func-
tion that exposes an error code, either directly through
a return value (e.g., the function contains a return
-EIO statement) or indirectly through a function argu-
ment passed by reference. After finding all generation
endpoints, EDP marks each function that propagates the
error codes; propagating functions receive error codes
from the functions that they call and then simply prop-
agate them in a return value or function parameter. The
termination endpoint is the function in which an error
code is no longer propagated in the return value or a pa-
rameter of the function.

One of the major challenges we address when con-
structing error channels is handling function pointers.
The typical approach for handling function pointers is
to implement a points-to analysis [13] that identifies the
set of real functions each function pointer might point
at; however, field-sensitive points-to analyses can be ex-
pensive. Therefore, we customize our points-to analysis
to exploit the systematic structure that these pointers ex-
hibit.

First, we keep track of all structures that have function
pointers. For example, the VFS read and write interfaces
are defined as fields in the file ops structure:

struct file_ops {
int (*read) ();
int (*write) ();

};

Since each file system needs to define its own
file ops, we automatically find all global instances of
such structures, look for the function pointer assignments
within the instances, and map function-pointer imple-
mentations to the function pointer interfaces. For exam-
ple, ext2 and ext3 define their file operations like this:

struct file_ops ext2_f_ops {
.read = ext2_read;
.write = ext2_write;

};
struct file_ops ext3_f_ops {

.read = ext3_read;

.write = ext3_write;
};

Given such global structure instances, we add the in-
terface implementations (e.g., ext2 read) to the im-
plementation list of the corresponding interfaces (e.g.,

file ops→read). Although this technique connects
most of the mappings, a function pointer assignment
could still occur in an instruction rather than in a global
structure instance. Thus, our tool also visits all functions
and finds any assignment that maps an implementation to
an interface. For example, if we find an assignment such
as f op->read = ntfs read, then we add ntfs read
to the list of file ops→read implementations.

In the last phase, we change function pointer calls to
direct calls. For example, if VFS makes an interface call
such as (f op->read)(), then we automatically rewrite
such an assignment to:

switch (...) {
case ext2: ext2_read(); break;
case ext3: ext3_read(); break;
case ntfs: ntfs_read(); break;
...

}

Across all Linux file systems and storage de-
vice drivers, there are 191 structural interfaces (e.g.,
file ops), 904 function pointer fields (e.g., read),
5039 implementations (e.g., ext2 read), and 2685
function pointer calls (e.g., (f op->read)()). Out of
2865 function pointer calls, we connect all except 564
calls (20%). The unconnected 20% of calls are due to in-
direct implementation assignment. For example, we can-
not map assignment such as f op->read = f, where f
is either a local variable or a function parameter, and not
a function name. While it is feasible to traceback such
assignments using stronger and more expensive analy-
sis, we assume that major interfaces linking modules to-
gether have already been connected as part of global in-
stances. If all calls are connected, more error propagation
chain can be analyzed, which means more violations are
likely to be found.

2.2.3 Channel Analysis

The third component of EDP distinguishes two kinds
of channels: error-complete and error-broken channels.
An error-complete channel is a channel that minimally
checks the occurrence of an error. An error-complete
channel thus has this property at its termination endpoint:

∃ if (expr) { ... }, where

errorCodeV ariable ⊆ expr

which states that an error code is considered checked if
there exist an if condition whose expression contains
the variable that stores the error code. For example, the
function goodTerminationEndpoint in the code seg-
ment below carries an error-complete channel because
the function saves the returned error code (line 2) and
checks the error code (line 3):

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 209

2.2.2 Channel Construction
The second component of EDP constructs the channel
in which the specified error codes propagate. A channel
can be constructed from function calls and asynchronous
wake-up paths; in our current analysis, we focus only
on function calls and discuss asynchronous paths in Sec-
tion 5.3.

We define a channel by its two endpoints: generation
and termination. The generation endpoint is the func-
tion that exposes an error code, either directly through
a return value (e.g., the function contains a return
-EIO statement) or indirectly through a function argu-
ment passed by reference. After finding all generation
endpoints, EDP marks each function that propagates the
error codes; propagating functions receive error codes
from the functions that they call and then simply prop-
agate them in a return value or function parameter. The
termination endpoint is the function in which an error
code is no longer propagated in the return value or a pa-
rameter of the function.

One of the major challenges we address when con-
structing error channels is handling function pointers.
The typical approach for handling function pointers is
to implement a points-to analysis [13] that identifies the
set of real functions each function pointer might point
at; however, field-sensitive points-to analyses can be ex-
pensive. Therefore, we customize our points-to analysis
to exploit the systematic structure that these pointers ex-
hibit.

First, we keep track of all structures that have function
pointers. For example, the VFS read and write interfaces
are defined as fields in the file ops structure:

struct file_ops {
int (*read) ();
int (*write) ();

};

Since each file system needs to define its own
file ops, we automatically find all global instances of
such structures, look for the function pointer assignments
within the instances, and map function-pointer imple-
mentations to the function pointer interfaces. For exam-
ple, ext2 and ext3 define their file operations like this:

struct file_ops ext2_f_ops {
.read = ext2_read;
.write = ext2_write;

};
struct file_ops ext3_f_ops {

.read = ext3_read;

.write = ext3_write;
};

Given such global structure instances, we add the in-
terface implementations (e.g., ext2 read) to the im-
plementation list of the corresponding interfaces (e.g.,

file ops→read). Although this technique connects
most of the mappings, a function pointer assignment
could still occur in an instruction rather than in a global
structure instance. Thus, our tool also visits all functions
and finds any assignment that maps an implementation to
an interface. For example, if we find an assignment such
as f op->read = ntfs read, then we add ntfs read
to the list of file ops→read implementations.

In the last phase, we change function pointer calls to
direct calls. For example, if VFS makes an interface call
such as (f op->read)(), then we automatically rewrite
such an assignment to:

switch (...) {
case ext2: ext2_read(); break;
case ext3: ext3_read(); break;
case ntfs: ntfs_read(); break;
...

}

Across all Linux file systems and storage de-
vice drivers, there are 191 structural interfaces (e.g.,
file ops), 904 function pointer fields (e.g., read),
5039 implementations (e.g., ext2 read), and 2685
function pointer calls (e.g., (f op->read)()). Out of
2865 function pointer calls, we connect all except 564
calls (20%). The unconnected 20% of calls are due to in-
direct implementation assignment. For example, we can-
not map assignment such as f op->read = f, where f
is either a local variable or a function parameter, and not
a function name. While it is feasible to traceback such
assignments using stronger and more expensive analy-
sis, we assume that major interfaces linking modules to-
gether have already been connected as part of global in-
stances. If all calls are connected, more error propagation
chain can be analyzed, which means more violations are
likely to be found.

2.2.3 Channel Analysis

The third component of EDP distinguishes two kinds
of channels: error-complete and error-broken channels.
An error-complete channel is a channel that minimally
checks the occurrence of an error. An error-complete
channel thus has this property at its termination endpoint:

∃ if (expr) { ... }, where

errorCodeV ariable ⊆ expr

which states that an error code is considered checked if
there exist an if condition whose expression contains
the variable that stores the error code. For example, the
function goodTerminationEndpoint in the code seg-
ment below carries an error-complete channel because
the function saves the returned error code (line 2) and
checks the error code (line 3):

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 209

2.2.2 Channel Construction
The second component of EDP constructs the channel
in which the specified error codes propagate. A channel
can be constructed from function calls and asynchronous
wake-up paths; in our current analysis, we focus only
on function calls and discuss asynchronous paths in Sec-
tion 5.3.

We define a channel by its two endpoints: generation
and termination. The generation endpoint is the func-
tion that exposes an error code, either directly through
a return value (e.g., the function contains a return
-EIO statement) or indirectly through a function argu-
ment passed by reference. After finding all generation
endpoints, EDP marks each function that propagates the
error codes; propagating functions receive error codes
from the functions that they call and then simply prop-
agate them in a return value or function parameter. The
termination endpoint is the function in which an error
code is no longer propagated in the return value or a pa-
rameter of the function.

One of the major challenges we address when con-
structing error channels is handling function pointers.
The typical approach for handling function pointers is
to implement a points-to analysis [13] that identifies the
set of real functions each function pointer might point
at; however, field-sensitive points-to analyses can be ex-
pensive. Therefore, we customize our points-to analysis
to exploit the systematic structure that these pointers ex-
hibit.

First, we keep track of all structures that have function
pointers. For example, the VFS read and write interfaces
are defined as fields in the file ops structure:

struct file_ops {
int (*read) ();
int (*write) ();

};

Since each file system needs to define its own
file ops, we automatically find all global instances of
such structures, look for the function pointer assignments
within the instances, and map function-pointer imple-
mentations to the function pointer interfaces. For exam-
ple, ext2 and ext3 define their file operations like this:

struct file_ops ext2_f_ops {
.read = ext2_read;
.write = ext2_write;

};
struct file_ops ext3_f_ops {

.read = ext3_read;

.write = ext3_write;
};

Given such global structure instances, we add the in-
terface implementations (e.g., ext2 read) to the im-
plementation list of the corresponding interfaces (e.g.,

file ops→read). Although this technique connects
most of the mappings, a function pointer assignment
could still occur in an instruction rather than in a global
structure instance. Thus, our tool also visits all functions
and finds any assignment that maps an implementation to
an interface. For example, if we find an assignment such
as f op->read = ntfs read, then we add ntfs read
to the list of file ops→read implementations.

In the last phase, we change function pointer calls to
direct calls. For example, if VFS makes an interface call
such as (f op->read)(), then we automatically rewrite
such an assignment to:

switch (...) {
case ext2: ext2_read(); break;
case ext3: ext3_read(); break;
case ntfs: ntfs_read(); break;
...

}

Across all Linux file systems and storage de-
vice drivers, there are 191 structural interfaces (e.g.,
file ops), 904 function pointer fields (e.g., read),
5039 implementations (e.g., ext2 read), and 2685
function pointer calls (e.g., (f op->read)()). Out of
2865 function pointer calls, we connect all except 564
calls (20%). The unconnected 20% of calls are due to in-
direct implementation assignment. For example, we can-
not map assignment such as f op->read = f, where f
is either a local variable or a function parameter, and not
a function name. While it is feasible to traceback such
assignments using stronger and more expensive analy-
sis, we assume that major interfaces linking modules to-
gether have already been connected as part of global in-
stances. If all calls are connected, more error propagation
chain can be analyzed, which means more violations are
likely to be found.

2.2.3 Channel Analysis

The third component of EDP distinguishes two kinds
of channels: error-complete and error-broken channels.
An error-complete channel is a channel that minimally
checks the occurrence of an error. An error-complete
channel thus has this property at its termination endpoint:

∃ if (expr) { ... }, where

errorCodeV ariable ⊆ expr

which states that an error code is considered checked if
there exist an if condition whose expression contains
the variable that stores the error code. For example, the
function goodTerminationEndpoint in the code seg-
ment below carries an error-complete channel because
the function saves the returned error code (line 2) and
checks the error code (line 3):

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 209

TU Dresden EIO: Error Checking is Occasionally Correct

TERMINOLOGY

■ Error-complete channels:

6

1 void goodTerminationEndpoint() {
2 int err = generationEndpoint();
3 if (err)
4 ...
5 }
6 int generationEndpoint() {
7 return -EIO;
8 }

Note that an error could be checked but not handled
properly, e.g. no error handling in the if condition. Since
error handling is usually specific to each file system, and
hence there are many instances of it, we decided to be
“generous” in the way we define how error is handled,
i.e. by just checking it. More violations might be found
when we incorporate all instances of error handling.

An error-broken channel is the inverse of an error-
complete channel. In particular, the error code is ei-
ther unsaved, unchecked, or overwritten. For example,
the function badTerminationEndpoint below carries
an error-broken channel of unchecked type because the
function saves the returned error code (line 2) but it never
checks the error before the function exits (line 3):

1 void badTerminationEndpoint() {
2 int err = generationEndpoint();
3 return;
4 }

An error-broken channel is a serious file system bug
because it can lead to a silent failure. In a few cases,
we inject faults in error-broken channels to confirm the
existence of silent failures. We utilize our block-level
fault injection technique [20] to exercise error-broken
channels that relate to disk I/O. In a broken channel,
we look for two pieces of information: which workload
and which failure led us to that channel. After finding
the necessary information, we run the workload, inject
the specific block failure, and observe the I/O traces and
the returned error codes received in upper layers (e.g.,
the application layer) to confirm whether a broken chan-
nel leads to a silent failure. The reader will note that
our fault-injection technique is limited to disk I/O re-
lated channels. To exercise all error-broken channels,
techniques such as symbolic execution and directed test-
ing [9, 10] that simulate the environment of the compo-
nent in test would be of great utility.

2.2.4 Limitations
Error propagation has complex characteristics: correct
error codes must be returned; each subsystem uses both
generic and specific error codes; one error code could
be mapped to another; error codes are stored not only
in scalar variables but also in structures (e.g., control
blocks); and error codes flow not only through func-
tion calls but also asynchronously via interrupts and call-
backs. In our static analysis, we have not modeled all

these characteristics. Nevertheless, by just focusing on
the propagation of basic error codes via function call, we
have found numerous violations that need to be fixed.
A more complete tool that covers the properties above
would uncover even more incorrect error handling.

3 Results
We have performed EDP analysis on all file systems and
storage device drivers in Linux 2.6.15.4. Our analysis
studies how 34 basic error codes (e.g., EIO and ENOMEM)
defined in include/asm-generic/errno-base.h
propagate through these subsystems. We examine these
basic error codes because they involve thousands of func-
tions and propagate across thousands of calls.

In these results, we distinguish two types of viola-
tions that make up an error-broken channel: unsaved and
unchecked error codes (overwritten codes have been de-
ferred to future work; see Section 5.1 for more informa-
tion). An unsaved error code is found when a callee
propagates an error code via the return value, but the
caller does not save the return value (i.e., it is treated
as a void-returning call even though it actually returns an
error code). Throughout the paper, we refer to this type
of broken channel as a “bad call.” An unchecked error
code is found when a variable that may contain an error
code is neither checked nor used in the future; we always
refer to this case as an unchecked code.

3.1 Unsaved Error Codes
First, we report the number of error-broken channels due
to a caller simply not saving the returned error code
(i.e., the number of bad calls). The simplified HFS
code below shows an example of unsaved error code.
The function find init accepts a new uninitialized
find data structure (line 2), allocates a memory space
for the search key field (line 3), and returns ENOMEM
error code when the memory allocation fails (line 5).
However, one of its callers, file lookup, does not save
the returned error code (line 10) but tries to access the
search key field which still points to NULL (line 11).
Hence, a null-pointer dereference takes place and the
system could crash or corrupt data.

1 // hfs/bfind.c
2 int find_init(find_data *fd) {
3 fd->search_key = kmalloc(..)
4 if (!fd->search_key)
5 return -ENOMEM;
6 ...
7 }
8 // hfs/inode.c
9 int file_lookup() {

10 find_init(fd); /* NOT-SAVED E.C */
11 fd->search_key->cat = ...; /* BAD!! */
12 ...
13 }

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association210

1 void goodTerminationEndpoint() {
2 int err = generationEndpoint();
3 if (err)
4 ...
5 }
6 int generationEndpoint() {
7 return -EIO;
8 }

Note that an error could be checked but not handled
properly, e.g. no error handling in the if condition. Since
error handling is usually specific to each file system, and
hence there are many instances of it, we decided to be
“generous” in the way we define how error is handled,
i.e. by just checking it. More violations might be found
when we incorporate all instances of error handling.

An error-broken channel is the inverse of an error-
complete channel. In particular, the error code is ei-
ther unsaved, unchecked, or overwritten. For example,
the function badTerminationEndpoint below carries
an error-broken channel of unchecked type because the
function saves the returned error code (line 2) but it never
checks the error before the function exits (line 3):

1 void badTerminationEndpoint() {
2 int err = generationEndpoint();
3 return;
4 }

An error-broken channel is a serious file system bug
because it can lead to a silent failure. In a few cases,
we inject faults in error-broken channels to confirm the
existence of silent failures. We utilize our block-level
fault injection technique [20] to exercise error-broken
channels that relate to disk I/O. In a broken channel,
we look for two pieces of information: which workload
and which failure led us to that channel. After finding
the necessary information, we run the workload, inject
the specific block failure, and observe the I/O traces and
the returned error codes received in upper layers (e.g.,
the application layer) to confirm whether a broken chan-
nel leads to a silent failure. The reader will note that
our fault-injection technique is limited to disk I/O re-
lated channels. To exercise all error-broken channels,
techniques such as symbolic execution and directed test-
ing [9, 10] that simulate the environment of the compo-
nent in test would be of great utility.

2.2.4 Limitations
Error propagation has complex characteristics: correct
error codes must be returned; each subsystem uses both
generic and specific error codes; one error code could
be mapped to another; error codes are stored not only
in scalar variables but also in structures (e.g., control
blocks); and error codes flow not only through func-
tion calls but also asynchronously via interrupts and call-
backs. In our static analysis, we have not modeled all

these characteristics. Nevertheless, by just focusing on
the propagation of basic error codes via function call, we
have found numerous violations that need to be fixed.
A more complete tool that covers the properties above
would uncover even more incorrect error handling.

3 Results
We have performed EDP analysis on all file systems and
storage device drivers in Linux 2.6.15.4. Our analysis
studies how 34 basic error codes (e.g., EIO and ENOMEM)
defined in include/asm-generic/errno-base.h
propagate through these subsystems. We examine these
basic error codes because they involve thousands of func-
tions and propagate across thousands of calls.

In these results, we distinguish two types of viola-
tions that make up an error-broken channel: unsaved and
unchecked error codes (overwritten codes have been de-
ferred to future work; see Section 5.1 for more informa-
tion). An unsaved error code is found when a callee
propagates an error code via the return value, but the
caller does not save the return value (i.e., it is treated
as a void-returning call even though it actually returns an
error code). Throughout the paper, we refer to this type
of broken channel as a “bad call.” An unchecked error
code is found when a variable that may contain an error
code is neither checked nor used in the future; we always
refer to this case as an unchecked code.

3.1 Unsaved Error Codes
First, we report the number of error-broken channels due
to a caller simply not saving the returned error code
(i.e., the number of bad calls). The simplified HFS
code below shows an example of unsaved error code.
The function find init accepts a new uninitialized
find data structure (line 2), allocates a memory space
for the search key field (line 3), and returns ENOMEM
error code when the memory allocation fails (line 5).
However, one of its callers, file lookup, does not save
the returned error code (line 10) but tries to access the
search key field which still points to NULL (line 11).
Hence, a null-pointer dereference takes place and the
system could crash or corrupt data.

1 // hfs/bfind.c
2 int find_init(find_data *fd) {
3 fd->search_key = kmalloc(..)
4 if (!fd->search_key)
5 return -ENOMEM;
6 ...
7 }
8 // hfs/inode.c
9 int file_lookup() {

10 find_init(fd); /* NOT-SAVED E.C */
11 fd->search_key->cat = ...; /* BAD!! */
12 ...
13 }

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association210

1 void goodTerminationEndpoint() {
2 int err = generationEndpoint();
3 if (err)
4 ...
5 }
6 int generationEndpoint() {
7 return -EIO;
8 }

Note that an error could be checked but not handled
properly, e.g. no error handling in the if condition. Since
error handling is usually specific to each file system, and
hence there are many instances of it, we decided to be
“generous” in the way we define how error is handled,
i.e. by just checking it. More violations might be found
when we incorporate all instances of error handling.

An error-broken channel is the inverse of an error-
complete channel. In particular, the error code is ei-
ther unsaved, unchecked, or overwritten. For example,
the function badTerminationEndpoint below carries
an error-broken channel of unchecked type because the
function saves the returned error code (line 2) but it never
checks the error before the function exits (line 3):

1 void badTerminationEndpoint() {
2 int err = generationEndpoint();
3 return;
4 }

An error-broken channel is a serious file system bug
because it can lead to a silent failure. In a few cases,
we inject faults in error-broken channels to confirm the
existence of silent failures. We utilize our block-level
fault injection technique [20] to exercise error-broken
channels that relate to disk I/O. In a broken channel,
we look for two pieces of information: which workload
and which failure led us to that channel. After finding
the necessary information, we run the workload, inject
the specific block failure, and observe the I/O traces and
the returned error codes received in upper layers (e.g.,
the application layer) to confirm whether a broken chan-
nel leads to a silent failure. The reader will note that
our fault-injection technique is limited to disk I/O re-
lated channels. To exercise all error-broken channels,
techniques such as symbolic execution and directed test-
ing [9, 10] that simulate the environment of the compo-
nent in test would be of great utility.

2.2.4 Limitations
Error propagation has complex characteristics: correct
error codes must be returned; each subsystem uses both
generic and specific error codes; one error code could
be mapped to another; error codes are stored not only
in scalar variables but also in structures (e.g., control
blocks); and error codes flow not only through func-
tion calls but also asynchronously via interrupts and call-
backs. In our static analysis, we have not modeled all

these characteristics. Nevertheless, by just focusing on
the propagation of basic error codes via function call, we
have found numerous violations that need to be fixed.
A more complete tool that covers the properties above
would uncover even more incorrect error handling.

3 Results
We have performed EDP analysis on all file systems and
storage device drivers in Linux 2.6.15.4. Our analysis
studies how 34 basic error codes (e.g., EIO and ENOMEM)
defined in include/asm-generic/errno-base.h
propagate through these subsystems. We examine these
basic error codes because they involve thousands of func-
tions and propagate across thousands of calls.

In these results, we distinguish two types of viola-
tions that make up an error-broken channel: unsaved and
unchecked error codes (overwritten codes have been de-
ferred to future work; see Section 5.1 for more informa-
tion). An unsaved error code is found when a callee
propagates an error code via the return value, but the
caller does not save the return value (i.e., it is treated
as a void-returning call even though it actually returns an
error code). Throughout the paper, we refer to this type
of broken channel as a “bad call.” An unchecked error
code is found when a variable that may contain an error
code is neither checked nor used in the future; we always
refer to this case as an unchecked code.

3.1 Unsaved Error Codes
First, we report the number of error-broken channels due
to a caller simply not saving the returned error code
(i.e., the number of bad calls). The simplified HFS
code below shows an example of unsaved error code.
The function find init accepts a new uninitialized
find data structure (line 2), allocates a memory space
for the search key field (line 3), and returns ENOMEM
error code when the memory allocation fails (line 5).
However, one of its callers, file lookup, does not save
the returned error code (line 10) but tries to access the
search key field which still points to NULL (line 11).
Hence, a null-pointer dereference takes place and the
system could crash or corrupt data.

1 // hfs/bfind.c
2 int find_init(find_data *fd) {
3 fd->search_key = kmalloc(..)
4 if (!fd->search_key)
5 return -ENOMEM;
6 ...
7 }
8 // hfs/inode.c
9 int file_lookup() {

10 find_init(fd); /* NOT-SAVED E.C */
11 fd->search_key->cat = ...; /* BAD!! */
12 ...
13 }

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association210

Unchecked

error
Unsaved error

„Bad call“

■ Error-broken channels:

TU Dresden EIO: Error Checking is Occasionally Correct

FALSE POSITIVES
■ Bad calls not always bad:

■ Multiple error returned, check only one

■ Rely on other callees to check errors

7

To show how EDP is useful in finding error propaga-
tion bugs, we begin by showing a sample of EDP analysis
for a simple file system, Apple HFS. Then, we present
our findings on all subsystems that we analyze, and fi-
nally discuss false positives.

3.1.1 EDP on Apple HFS
Figure 2 depicts the EDP output when analyzing the
propagation of the 34 basic error codes in the Apple HFS
file system. There are two important elements that EDP
produces in order to ease the debugging process. First,
EDP generates an error propagation graph that only in-
cludes functions and function calls through which the an-
alyzed error codes propagate. From the graph, one can
easily catch all bad calls and functions that make the bad
calls. Second, EDP provides a table that presents more
detailed information for each bad call (e.g., the location
where the bad call is made).

Using the information that EDP provides, we found
three major error-handling inconsistencies in HFS. First,
11 out of 14 calls to find init drop the returned er-
ror codes. As described earlier in this section, this bug
could cause the system to crash or corrupt data. Sec-
ond, 4 out of 5 total calls to the function brec find
are bad calls (as indicated by the four black edges, E,
D, N, and Q, found in the lower left of the graph). The
task of this function is to find a record in an HFS node
that best matches the given key, and return ENOENT (no
entry) error code if it fails. The only call that saves this
error code is made by the wrapper, brec find. Inter-
estingly, all 18 calls to this wrapper propagate the error
code properly (as indicated by all gray edges coming into
the function).

Finally, 3 out of 4 calls to free exts do not save the
returned error code (labeled R, I, and J). This function
traverses a list of extents and locates the extents to be
freed. If the extents cannot be found, the function returns
EIO. More interestingly, the developer wrote a comment
“panic?” just before the return statement (maybe in the
hope that in this failure case the callers will call panic,
which will never happen if the error code is dropped).
By and large, we found similar inconsistencies in all the
subsystems we analyzed. The fact that the fraction of
bad calls over all calls to a function is generally high is
intriguing, and will be discussed further in Section 4.3.

3.1.2 EDP on All File Systems and Storage Drivers
Figure 3 and 4 show EDP outputs for six more file sys-
tems whose error-propagation graphs represent an inter-
esting sample. EDP outputs for the rest of the file sys-
tems can be downloaded from our web site [11]. A small
file system such as HFS+ has simple propagation chains,
yet bad calls are still made. More complex error propaga-
tion can be seen in ext3, ReiserFS, and IBM JFS; within

these file systems, error-codes propagate throughout 180
to 340 function calls. The error propagation in NFS is
more structured compared to other file systems. Finally,
among all file systems we analyze, XFS has the most
complex error propagation chain; almost 1500 function
calls propagate error-codes. Note that each graph in Fig-
ures 3 and 4 was produced by analyzing each file sys-
tem in isolation (i.e., the graph only shows intra-module
but not inter-module calls), yet they already illustrate the
complexity of error code propagation in each file sys-
tem. Manual code inspection would require a tremen-
dous amount of work to find error-propagation bugs.

Next, we analyzed the propagation of error codes
across all file systems and storage device drivers as a
whole. All inter-module calls were connected by our
EDP channel constructor, which connects all function
pointer calls; hence, we were able to catch inter-module
bad calls in addition to intra-module ones. Table 2 sum-
marizes our findings. Note that the number of violations
reported is higher than the ones reported in Figures 2, 3,
and 4 because we catch more bugs when we analyze each
file system in conjunction with other subsystems (e.g.,
ext3 with the journaling layer, VFS, and the memory
management).

Surprisingly, out of 9022 error channels, 1153 (or
nearly 13%) constitute bad calls. This appears to be
a long-standing problem. We ran a partial analysis in
Linux 2.4 (not shown) and found that the magnitude
of incomplete error code propagation is essentially the
same. In Section 4, we try to dissect the root causes of
this problem.

3.1.3 False Positives
It is important to note that while the number of bad calls
is high, not all bad calls could cause damage to the sys-
tem. The primary reason is what we call a double error
code; some functions expose two or more error codes at
the same time, and checking one of the error codes while
ignoring the others can still be correct. For example, in
the ReiserFS code below, the error code returned from
sync dirty buffer does not have to be saved (line 8)
if and only if the function performs the check on the
second error code (line 9); the buffer must be checked
whether it is is up-to-date.

1 // fs/buffer.c
2 int sync_dirty_buffer (buffer_head* bh) {
3 ...
4 return ret; // RETURN ERROR CODE
5 }
6 // reiserfs/journal.c
7 int flush_commit_list() {
8 sync_dirty_buffer(bh); // UNSAVED EC
9 if (!buffer_uptodate(bh)) {

10 return -EIO;
11 }
12 }

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 215

TU Dresden EIO: Error Checking is Occasionally Correct

EXAMPLE: HFS

8

Viol# Caller → Callee Filename Line#
A file lookup find init inode.c 493
B fill super find init super.c 385
C lookup find init dir.c 30
D brec updt prnt brec find brec.c 405
E brec updt prnt brec find brec.c 345
F cat delete free fork catalog.c 228
G cat delete find init catalog.c 213
H cat create find init catalog.c 95
I file trunc free exts extent.c 507
J file trunc free exts extent.c 497
K file trunc find init extent.c 494
L ext write ext find init extent.c 135
M ext read ext find init extent.c 188
N brec rmv brec find brec.c 193
O readdir find init dir.c 68
P cat move find init catalog.c 280
Q brec insert brec find brec.c 145
R free fork free exts extent.c 307
S free fork find init extent.c 301

LEGEND

function Error-broken
 termination endpoint

function
Generation endpoint

function Propagate function
and generation endpoint

function
Propagate function
or error-complete

 termination endpoint

B

A
Function A calls
 function B (and
 error-code flows

 from B to A)

Error channel

Broken channel
(tagged with

violation label)

Viol #

0 1 2 3 4 5 6 7

free_exts__ext_read_ext

brec_find

__brec_find

bmap_alloc

extend_file

ext_read_ext add_ext

brec_read

get_blocks

get_block

file_lookup

find_init

Apart_find

fill_super

B

cat_find_brecmdb_get

get_last_sess

lookup

C

brec_gotobrec_updt_prnt

DE

__ext_write_ext

cat_delete

G

free_fork

F

R

Sgetxattr setxattrcat_create

H

file_trunc

IJ

K

__ext_cache_ext

write_inode

M

ext_write_ext

L

mkdir

rmdirunlink

create

brec_rmv

N

rename

cat_move

P

readdir

O

brec_insert

Q

Figure 2: A Sample of EDP Output. The lower figure depicts the EDP output for the HFS file system. Some function names
have been shortened to improve readability. As summarized in the upper right legend, a gray node with a thicker border represents
a function that generates an error code. The other gray node represents the same thing, but the function also propagates the error
code received from its callee. A white node represents a good function, i.e. it either propagates the error code to its caller or
if it does not propagate the error code it minimally checks the error code. A black node represents an error-broken termination
endpoint, i.e. it is a function that commits the violation of unsaved error codes. The darker and thicker edge coming out from a
black node implies a broken error channel (a bad call); an error code actually flows from its callee, but the caller drops the error
code. For ease of debugging, each bad call is labeled with a violation number whose detailed information can be found in the upper
left violation table. For example, violation #E found in the bottom left corner of the graph is a bad call made by brec updt prnt
when calling brec find, which can be located in fs/hfs/brec.c line 345.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 211

Viol# Caller → Callee Filename Line#
A file lookup find init inode.c 493
B fill super find init super.c 385
C lookup find init dir.c 30
D brec updt prnt brec find brec.c 405
E brec updt prnt brec find brec.c 345
F cat delete free fork catalog.c 228
G cat delete find init catalog.c 213
H cat create find init catalog.c 95
I file trunc free exts extent.c 507
J file trunc free exts extent.c 497
K file trunc find init extent.c 494
L ext write ext find init extent.c 135
M ext read ext find init extent.c 188
N brec rmv brec find brec.c 193
O readdir find init dir.c 68
P cat move find init catalog.c 280
Q brec insert brec find brec.c 145
R free fork free exts extent.c 307
S free fork find init extent.c 301

LEGEND

function Error-broken
 termination endpoint

function
Generation endpoint

function Propagate function
and generation endpoint

function
Propagate function
or error-complete

 termination endpoint

B

A
Function A calls
 function B (and
 error-code flows

 from B to A)

Error channel

Broken channel
(tagged with

violation label)

Viol #

0 1 2 3 4 5 6 7

free_exts__ext_read_ext

brec_find

__brec_find

bmap_alloc

extend_file

ext_read_ext add_ext

brec_read

get_blocks

get_block

file_lookup

find_init

Apart_find

fill_super

B

cat_find_brecmdb_get

get_last_sess

lookup

C

brec_gotobrec_updt_prnt

DE

__ext_write_ext

cat_delete

G

free_fork

F

R

Sgetxattr setxattrcat_create

H

file_trunc

IJ

K

__ext_cache_ext

write_inode

M

ext_write_ext

L

mkdir

rmdirunlink

create

brec_rmv

N

rename

cat_move

P

readdir

O

brec_insert

Q

Figure 2: A Sample of EDP Output. The lower figure depicts the EDP output for the HFS file system. Some function names
have been shortened to improve readability. As summarized in the upper right legend, a gray node with a thicker border represents
a function that generates an error code. The other gray node represents the same thing, but the function also propagates the error
code received from its callee. A white node represents a good function, i.e. it either propagates the error code to its caller or
if it does not propagate the error code it minimally checks the error code. A black node represents an error-broken termination
endpoint, i.e. it is a function that commits the violation of unsaved error codes. The darker and thicker edge coming out from a
black node implies a broken error channel (a bad call); an error code actually flows from its callee, but the caller drops the error
code. For ease of debugging, each bad call is labeled with a violation number whose detailed information can be found in the upper
left violation table. For example, violation #E found in the bottom left corner of the graph is a bad call made by brec updt prnt
when calling brec find, which can be located in fs/hfs/brec.c line 345.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 211

TU Dresden EIO: Error Checking is Occasionally Correct

EXAMPLE: HFS

9

Viol# Caller → Callee Filename Line#
A file lookup find init inode.c 493
B fill super find init super.c 385
C lookup find init dir.c 30
D brec updt prnt brec find brec.c 405
E brec updt prnt brec find brec.c 345
F cat delete free fork catalog.c 228
G cat delete find init catalog.c 213
H cat create find init catalog.c 95
I file trunc free exts extent.c 507
J file trunc free exts extent.c 497
K file trunc find init extent.c 494
L ext write ext find init extent.c 135
M ext read ext find init extent.c 188
N brec rmv brec find brec.c 193
O readdir find init dir.c 68
P cat move find init catalog.c 280
Q brec insert brec find brec.c 145
R free fork free exts extent.c 307
S free fork find init extent.c 301

LEGEND

function Error-broken
 termination endpoint

function
Generation endpoint

function Propagate function
and generation endpoint

function
Propagate function
or error-complete

 termination endpoint

B

A
Function A calls
 function B (and
 error-code flows

 from B to A)

Error channel

Broken channel
(tagged with

violation label)

Viol #

0 1 2 3 4 5 6 7

free_exts__ext_read_ext

brec_find

__brec_find

bmap_alloc

extend_file

ext_read_ext add_ext

brec_read

get_blocks

get_block

file_lookup

find_init

Apart_find

fill_super

B

cat_find_brecmdb_get

get_last_sess

lookup

C

brec_gotobrec_updt_prnt

DE

__ext_write_ext

cat_delete

G

free_fork

F

R

Sgetxattr setxattrcat_create

H

file_trunc

IJ

K

__ext_cache_ext

write_inode

M

ext_write_ext

L

mkdir

rmdirunlink

create

brec_rmv

N

rename

cat_move

P

readdir

O

brec_insert

Q

Figure 2: A Sample of EDP Output. The lower figure depicts the EDP output for the HFS file system. Some function names
have been shortened to improve readability. As summarized in the upper right legend, a gray node with a thicker border represents
a function that generates an error code. The other gray node represents the same thing, but the function also propagates the error
code received from its callee. A white node represents a good function, i.e. it either propagates the error code to its caller or
if it does not propagate the error code it minimally checks the error code. A black node represents an error-broken termination
endpoint, i.e. it is a function that commits the violation of unsaved error codes. The darker and thicker edge coming out from a
black node implies a broken error channel (a bad call); an error code actually flows from its callee, but the caller drops the error
code. For ease of debugging, each bad call is labeled with a violation number whose detailed information can be found in the upper
left violation table. For example, violation #E found in the bottom left corner of the graph is a bad call made by brec updt prnt
when calling brec find, which can be located in fs/hfs/brec.c line 345.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 211

TU Dresden EIO: Error Checking is Occasionally Correct

COMPLEXITY

10

NFS Client [54 bad / 446 calls, 12%]

XFS [105 bad / 1453 calls, 7%]

Figure 4: More Samples of EDP Output (Cont’d). Please see caption in Figure 3.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 213

TU Dresden EIO: Error Checking is Occasionally Correct

ANALYSIS

■ Only „complex“ file systems:
10k+ SLOC, 50+ error related calls

■ Ext3, JFS least robust, XFS most

■ Storage: IDE has more violations than SCSI
11

By % Broken By Viol/Kloc
Rank FS Frac. FS Viol/Kloc

1 IBM JFS 24.4 ext3 7.2
2 ext3 22.1 IBM JFS 5.6
3 JFFS v2 15.7 NFS Client 3.6
4 NFS Client 12.9 VFS 2.9
5 CIFS 12.7 JFFS v2 2.2
6 MemMgmt 11.4 CIFS 2.1
7 ReiserFS 10.5 MemMgmt 2.0
8 VFS 8.4 ReiserFS 1.8
9 NTFS 8.1 XFS 1.4
10 XFS 6.9 NFS Server 1.2

Table 3: Least Robust File Systems. The table shows
the ten least robust file systems using two ranking systems. In
the first ranking system, file system robustness is ranked based
on the fraction of broken channels over all error channels (the
5th column of Table 2). The second ranking system sorts file
systems based on the number of broken channels found in every
Kloc (the 6th column of Table 2).

Since the number of unchecked error code reports is
small, we were able to remove the false positives and find
a total of 3 and 2 unchecked error codes in file systems
and storage drivers, respectively, that could lead to silent
failures.

4 Analysis of Results
In the following sections, we present five analyses
whereby we try to uncover the root causes and impact
of incomplete error propagation. Since the number of
unchecked and overwritten error codes is small, we only
consider unsaved error codes (bad calls) in our analy-
ses; thus we use “bad calls” and “broken channels” in-
terchangeably from now on. First, we made a correla-
tion between robustness and complexity. Second, we an-
alyzed whether file systems and storage device drivers
give different treatment to errors occurring in I/O read
vs. I/O write operations. From that analysis we find that
many write errors are neglected; hence we perform the
next study in which we try to answer whether ignored er-
rors are corner-case mistakes or intentional choices. In
the final two analyses, we analyze whether chained er-
ror propagation and inter-module calls play major parts
in causing incorrect error propagation.

4.1 Complexity and Robustness
In our first analysis, we would like to correlate the num-
ber of mistakes in a subsystem with the complexity of
that subsystem. For file systems, XFS with 71 Kloc has
more mistakes than other, smaller file systems. However,
it is not necessary that XFS is seen as the least robust file
system. Table 3 sorts the robustness of each file system

based on two rankings. In both rankings, we only ac-
count file systems that are at least 10 Kloc in size with at
least 50 error-related calls, i.e. we only consider “com-
plex” file systems.

A noteworthy observation is that ext3 and IBM JFS
are ranked as the two least robust file systems. This fact
affirms our earlier findings on the robustness of ext3 and
IBM JFS [20]. In this prior work, we found that ext3
and IBM JFS are inconsistent in dealing with different
kinds of disk failures. Thus, it might be the case that
these inconsistent policies correlate with inconsistent er-
ror propagation.

Among storage device drivers, it is interesting to com-
pare the robustness of the SCSI and IDE subsystems. If
we compare SCSI and IDE subsystems using the first
ranking system, SCSI and IDE are almost comparable
(21% vs. 18%). However, if we compare them based
on the second ranking system, then the SCSI subsystem
is almost four times more robust than IDE (0.6 vs. 2.1
errors/Kloc). Nevertheless it seems the case that SCSI
utilizes basic error codes much more than IDE does.

When the robustness of storage drivers and file sys-
tems is compared using the first ranking, on average stor-
age drivers are less robust compared to file systems (22%
vs. 17%, as reported in the last rows of Table 2). On the
other hand, in the second ranking system, storage drivers
are more robust compared to file systems (1.1 vs. 2.4
mistakes/Kloc). From our point of view, the first rank-
ing system is more valid because a subsystem could be
comprised of submodules that do not necessarily use er-
ror codes; what is more important is the number of bad
calls in the population of all error-related calls.

4.2 Neglected Write Errors
As mentioned in Section 3.2, we have observed that er-
ror codes propagated in write or sync operations are
often ignored. Thus, we investigate how many write er-
rors are neglected compared to read errors. This study
is motivated by our findings in that section as well as by
our earlier findings where we found that at least for ext3,
read failures are detected, but write errors are often ig-
nored [20].

To perform this study, we filter out calls that do not re-
late to read and write operations. Since it is impractical
to do that manually, we use a simple string comparison
to mark calls that are relevant to our analysis. That is
we only take a caller→callee pair where the callee con-
tains the string read, write, sync, or wait. We include
wait-type calls because in many cases wait-type callees
(e.g., filemap datawait) represent waiting for one or
more I/O operations and could return error information
on the operation. Thus, in our study, write-, sync-, and
wait-type calls are categorized as write operations.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 217

File Systems

Bad EC Size Frac Viol/
Calls Calls (Kloc) (%) Kloc

XFS 101 1457 71 6.9 1.4
Virtual FS 96 1149 34 8.4 2.9
IBM JFS 95 390 17 24.4 5.6
ext3 80 362 12 22.1 7.2
NFS Client 62 482 18 12.9 3.6
CIFS 43 339 21 12.7 2.1
ReiserFS 42 399 24 10.5 1.8
Mem. Mgmt. 40 351 20 11.4 2.0
Apple HFS+ 25 98 7 25.5 3.7
JFFS v2 24 153 11 15.7 2.2
Apple HFS 20 76 5 26.3 4.8
SMB 19 196 6 9.7 3.5
ext2 18 103 6 17.5 3.3
AFS 16 62 7 25.8 2.6
NTFS 15 186 18 8.1 0.9
NFS Server 15 265 14 5.7 1.2
NCP 13 169 5 7.7 2.6
UFS 12 44 5 27.3 2.6
JBD 10 43 4 23.3 2.6
FAT 9 81 4 11.1 2.9
Plan 9 9 80 4 11.2 2.4
System V 7 30 3 23.3 3.2
JFFS 7 56 5 12.5 1.4
UDF 6 50 9 12.0 0.7
MSDOS 5 39 1 12.8 9.3
VFAT 4 39 1 10.3 5.0
Minix 4 31 4 12.9 1.2

Storage Drivers

Bad EC Size Frac Viol/
Calls Calls (Kloc) (%) Kloc

SCSI (root) 123 628 198 19.6 0.6
IDE (root) 53 223 15 23.8 3.5
Block Dev (root) 39 195 36 20.0 1.1
Software RAID 31 290 32 10.7 1.0
SCSI (aacraid) 30 76 7 39.5 4.8
SCSI (lpfc) 14 30 16 46.7 0.9
Blk Dev (P-IDE) 11 17 8 64.7 1.5
SCSI aic7xxx 8 62 37 12.9 0.2
IDE (pci) 5 106 12 4.7 0.4

File Systems (Cont’d)

Bad EC Size Frac Viol/
Calls Calls (Kloc) (%) Kloc

FUSE 4 48 3 8.3 1.5
Automounter4 4 53 2 7.5 2.7
NFS Lockd 3 21 4 14.3 0.8
Relayfs 2 5 1 40.0 2.7
Partitions 2 3 4 66.7 0.6
ISO 2 19 3 10.5 0.7
HugeTLB Sup 2 10 1 20.0 3.0
Compr. ROM 2 3 1 66.7 4.5
ADFS 2 30 2 6.7 1.3
sysfs sup. 1 29 2 3.4 0.8
romfs sup. 1 3 1 33.3 2.4
ramfs sup. 1 6 1 16.7 6.0
QNX 4 1 8 2 12.5 0.9
proc fs sup. 1 44 6 2.3 0.2
OS/2 HPFS 1 18 6 5.6 0.2
FreeVxFS 1 4 2 25.0 0.7
EFS 1 3 1 33.3 1.4
devpts 1 2 1 50.0 6.2
Boot FS 1 9 1 11.1 1.2
BeOS 1 5 3 20.0 0.5
Automounter 1 41 2 2.4 1.0
Amiga FFS 1 34 3 2.9 0.3
exportfs sup. 0 1 1 0.0 0.0
Coda 0 149 3 0.0 0.0

Total 833 7278 366 – –
Average 16.3 142.7 7.2 17.0 2.4

Storage Drivers (Cont’d)

Bad EC Size Frac Viol/
Calls Calls (Kloc) (%) Kloc

IDE legacy 2 3 3 66.7 0.8
Blk Layer Core 2 65 8 3.1 0.3
SCSI megaraid 1 30 6 3.3 0.2
Blk Dev (Eth) 1 5 2 20.0 0.7
SCSI (sym53c8) 0 6 10 0.0 0.0
SCSI (qla2xxx) 0 8 49 0.0 0.0

Total 320 1744 430 – –
Average 21.3 116.3 28.6 22.4 1.1

Table 2: Error-broken channels due to unsaved error codes. These tables report the number of bad calls found across
all file systems and storage device drivers in Linux 2.6.15.4. In each table, from left to right column we report the name of the
subsystem, the number of bad calls, the number of error channels (i.e., the number of calls to functions that propagate error codes),
the size of the subsystem, the fraction of bad calls over all error-related calls (ratio of 2nd and 3rd column), and finally the number
of violations per Kloc (ratio of 2nd and 4th column). We categorize a directory as a subsystem. Thus, for storage drivers, since
different SCSI device drivers exist in the first-level of the scsi/ directory, we put all of them as one subsystem. SCSI device
drivers that are located in different directories (e.g., scsi/lpfc/, scsi/aacraid/) are categorized as different subsystems.
The same principle is applied to IDE.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association214

TU Dresden EIO: Error Checking is Occasionally Correct

WRITE ERRORS

■ More than 63% of
write errors ignored

■ Possible explanations:

■ No higher-level error
handling

■ Errors neglected
intentionally

12

Bad EC Frac.
Callee Type Calls Calls (%)

Read∗ 26 603 4.3
Sync 70 236 29.7
Wait 27 70 38.6
Write 80 598 13.4
Sync+Wait+Write 177 904 19.6

Specific Callee
filemap fdatawait 22 29 75.9
filemap fdatawrite 30 47 63.8
sync blockdev 15 21 71.4

Table 4: Neglected write errors in file system code.
The table shows that read errors are handled more correctly
than write errors. The upper table shows the fraction of bad
calls over four category of calls: read, sync, wait, and write.
The later three can be categorized as a write operation. The
lower table shows neglected write errors for three specific func-
tions. The 29 (∗) violated read calls are all related to reada-
head and asynchronous read; in other words, all error codes
returned in synchronous reads are being saved and checked.

The upper half of Table 4 reports our findings. The
last column shows how often errors are ignored in the
file system code. Interestingly, file systems have a ten-
dency to correctly handle error codes propagated from
read-type calls, but not those from write-type calls
(4.3% vs. 19.6%). The 29 (4.3%) unsaved read error
codes are all found in readahead operations in the mem-
ory management subsystem; it might be acceptable to ig-
nore prefetch read errors because such reads can be reis-
sued in the future whenever the page is actually read.

As discussed in Section 3.1, a function could return
more than one error code at the same time, and checking
only one of them suffices. However, if we know that a
certain function only returns a single error code and yet
the caller does not save the return value properly, then
we would know that such call is really a flaw. To find
real flaws in the file system code, we examined three im-
portant functions that we know only return single error
codes: sync blockdev, filemap fdatawrite, and
filemap fdatawait. A file system that does not check
the returned error codes from these functions would ob-
viously let failures go unnoticed in the upper layers.

The lower half of Table 4 reports our findings. Many
error codes returned from the three methods are simply
not saved (> 63% in all cases). Two conclusions might
be drawn from this observation. First, this could suggest
that higher-level recovery code does not exist (since if it
exists, it will not be invoked due to the broken error chan-
nel), or it could be the case that errors are intentionally
neglected. We consider this second possibility in greater
detail in the next section.

0

200

400

600

800

1000

1153

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

Cu
m
ul
at
ive

 #
Ba

d
Ca

lls

Cu
m
ul
at
ive

 F
ra
ct
io
n

Inconsistency Frequency

CDF of Inconsistency Frequency vs. #Bad Calls

Figure 6: Inconsistent calls frequency. The figure shows
that inconsistent calls are not corner-case bugs. The x-axis rep-
resents the inconsistent-call frequency of a function. x=20%
means that there is one bad call out of five total calls; x=80%
means that there are four bad calls out of five total calls. The
left y-axis counts the cumulative number of bad calls. For ex-
ample, below the 20% mark, there are 80 bad calls that have
an inconsistent-call frequency of less than 20%. As reported in
Table 2, there exist a total of 1153 bad calls. The right y-axis
shows the cumulative fraction of bad calls over the 1153 bad
calls.

4.3 Inconsistent Calls:
Corner Case or Majority?

In this section, we consider the nature of inconsistent
calls. For example, we found that 1 out of 33 calls to
ide setup pci device does not save the return value.
One would probably consider this single call as an in-
consistent implementation because the majority of the
calls to that function save the return value. On the
other hand, we also found that 53 out of 54 calls to
unregister filesystem do not save the return error
codes. Assuming that most kernel developers are essen-
tially competent, this suggests that it may actually be safe
to not check the error code returned from this particular
function.

To quantify inconsistent calls, we define the in-
consistent call frequency of a function as the ratio
of bad calls over all error-related calls to the func-
tion, and correlate this frequency with the number of
bad calls to the function. For example, the incon-
sistent call frequencies for ide setup pci blockdev
and unregister filesystem are 3% (1/33) and 98%
(53/54) respectively and the numbers of bad calls are 1
and 53 respectively.

Figure 6 plots the cumulative distribution function of
this behavior. The graph could be seen as a means to
prioritize which bad calls to fix first. Bad calls that fall
below the 20% mark could be treated as corner cases,
i.e. we should be suspicious on one bad call in the midst

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association218

TU Dresden EIO: Error Checking is Occasionally Correct

SILENT FAILURE

13

■ Example 1: Journaling Block Device (JBD)

■ JBD recovery code ignores all write errors

■ Error code dropped in middle of channel

journal_recover

sync_blockdev

filemap_fdatawait filemap_fdatawrite

journal_recover()
/* BROKEN CHANNEL */
sync_blockdev();

sync_blockdev()
ret = fm_fdatawrite();
err = fm_fdatawait();
if(!ret) ret = err;
/* PROPAGATE EIO */
return ret;

Figure 5: Silent error in journal recovery. In the figure
on the left, EDP marks journal recover as a termination
endpoint of a broken channel. The code snippet on the right
shows that journal recover ignores the EIO propagated
by sync blockdev.

To ensure that the number of false positives we report
is not overly large, we manually analyze all of the code
snippets to check whether a second error code is being
checked. Note that this manual process can be automated
if we incorporate all types of error codes into EDP. We
have found only a total of 39 false positives, which have
been excluded from the numbers we report in this paper.
Thus, the high numbers in Table 2 provide a hint to a real
and critical problem.

3.2 Silent Failures: Manifestations of
Unsaved Error Codes

To show that unsaved error codes represent a serious
problem that can lead to silent failures, we injected disk
block failures in a few cases. As shown in Figure 5,
one serious silent failure arises during file system recov-
ery: the journaling block device layer (JBD) does not
properly propagate any block write failures, including in-
ode, directory, bitmap, superblock, and other block write
failures. EDP unearths these silent failures by pinpoint-
ing the journal recover function, which is responsi-
ble for file system recovery, as it calls sync blockdev
to flush the dirty buffer pages owned by the block de-
vice. Unfortunately, journal recover does not save
the error code propagated by sync blockdev in the case
of block write failures. This is an example where the
error code is dropped in the middle of its propagation
chain; sync blockdev correctly propagates the EIO er-
ror codes received from the two function calls it makes.

A similar problem occurs in the NFS server code.
From a similar failure injection experiment, we found
that the NFS client is not informed when a write fail-
ure occurs during a sync operation. In the experiment,
the client updates old data and then sends a sync oper-
ation with the data to the NFS server. The NFS server
then invokes the nfsd dosync operation, which mainly
performs three operations similar to the sync blockdev
call above. First, the NFS server writes dirty pages to the
disk; second, it writes dirty inodes and the superblock
to disk; third, it waits until the ongoing I/O data transfer

terminates. All these three operations could return er-
ror codes, but the implementation of nfsd dosync does
not save any return values. As a result, the NFS client
will never notice any disk write failures occurring in the
server. Thus, even a careful, error-robust client cannot
trust the server to inform it of errors that occur.

In the NFS server code, we might expect that at least
one return value would be saved and checked properly.
However, no return values are saved, leading one to ques-
tion whether the returned error codes from the write
or sync operations are correctly handled in general. It
could be the case that the developers are not concerned
about write failures. We investigate this hypothesis in
Section 4.2.

3.3 Unchecked Error Code
Lastly, we report the number of error-broken channels
due to a variable that contains an error code not being
checked or used in the future. For example, in the IBM
JFS code below, rc carries an error code propagated
from txCommit (line 4), but rc is never checked.

1 // jfs/jfs_txnmgr.c
2 int jfs_sync () {
3 int rc;
4 rc = txCommit(); // UNCHECKED ’rc’
5 // No usage or check of ’rc’
6 // after this line
7 }

This analysis can also report false positives due to the
double error code problem described previously. In ad-
dition, we also find the problem of overloaded variables
that contribute as false positives. We define a variable to
be overloaded if the variable could contain an error code
or a data value. For instance, blknum in the QNX4 code
below is an example of an overloaded variable:

1 // qnx4/dir.c
2 int qnx4_readdir () {
3 int blknum;
4 struct buffer_head *bh;
5 blknum = qnx4_block_map();
6 bh = sb_bread (blknum);
7 if (bh == NULL)
8 // error
9 }

In this code, qnx4 block map could return an er-
ror code (line 5), which is usually a negative value.
sb bread takes a block number and returns a buffer head
that contains the data for that particular block (line 6).
Since a negative block number will lead to a NULL buffer
head (line 7), the error code stored in blknum does not
have to be explicitly checked. The developer believes
that the other part of the code will catch this error or
eventually raise related errors. This practice reduces the
accuracy of our static analysis.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association216

■ Example 2: NFS server

■ Ignores all write errors in sync writes

■ Clients never notice

TU Dresden EIO: Error Checking is Occasionally Correct

BUG FREQUENCY

14

Bad EC Frac.
Callee Type Calls Calls (%)

Read∗ 26 603 4.3
Sync 70 236 29.7
Wait 27 70 38.6
Write 80 598 13.4
Sync+Wait+Write 177 904 19.6

Specific Callee
filemap fdatawait 22 29 75.9
filemap fdatawrite 30 47 63.8
sync blockdev 15 21 71.4

Table 4: Neglected write errors in file system code.
The table shows that read errors are handled more correctly
than write errors. The upper table shows the fraction of bad
calls over four category of calls: read, sync, wait, and write.
The later three can be categorized as a write operation. The
lower table shows neglected write errors for three specific func-
tions. The 29 (∗) violated read calls are all related to reada-
head and asynchronous read; in other words, all error codes
returned in synchronous reads are being saved and checked.

The upper half of Table 4 reports our findings. The
last column shows how often errors are ignored in the
file system code. Interestingly, file systems have a ten-
dency to correctly handle error codes propagated from
read-type calls, but not those from write-type calls
(4.3% vs. 19.6%). The 29 (4.3%) unsaved read error
codes are all found in readahead operations in the mem-
ory management subsystem; it might be acceptable to ig-
nore prefetch read errors because such reads can be reis-
sued in the future whenever the page is actually read.

As discussed in Section 3.1, a function could return
more than one error code at the same time, and checking
only one of them suffices. However, if we know that a
certain function only returns a single error code and yet
the caller does not save the return value properly, then
we would know that such call is really a flaw. To find
real flaws in the file system code, we examined three im-
portant functions that we know only return single error
codes: sync blockdev, filemap fdatawrite, and
filemap fdatawait. A file system that does not check
the returned error codes from these functions would ob-
viously let failures go unnoticed in the upper layers.

The lower half of Table 4 reports our findings. Many
error codes returned from the three methods are simply
not saved (> 63% in all cases). Two conclusions might
be drawn from this observation. First, this could suggest
that higher-level recovery code does not exist (since if it
exists, it will not be invoked due to the broken error chan-
nel), or it could be the case that errors are intentionally
neglected. We consider this second possibility in greater
detail in the next section.

0

200

400

600

800

1000

1153

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1
Cu

m
ul
at
ive

 #
Ba

d
Ca

lls

Cu
m
ul
at
ive

 F
ra
ct
io
n

Inconsistency Frequency

CDF of Inconsistency Frequency vs. #Bad Calls

Figure 6: Inconsistent calls frequency. The figure shows
that inconsistent calls are not corner-case bugs. The x-axis rep-
resents the inconsistent-call frequency of a function. x=20%
means that there is one bad call out of five total calls; x=80%
means that there are four bad calls out of five total calls. The
left y-axis counts the cumulative number of bad calls. For ex-
ample, below the 20% mark, there are 80 bad calls that have
an inconsistent-call frequency of less than 20%. As reported in
Table 2, there exist a total of 1153 bad calls. The right y-axis
shows the cumulative fraction of bad calls over the 1153 bad
calls.

4.3 Inconsistent Calls:
Corner Case or Majority?

In this section, we consider the nature of inconsistent
calls. For example, we found that 1 out of 33 calls to
ide setup pci device does not save the return value.
One would probably consider this single call as an in-
consistent implementation because the majority of the
calls to that function save the return value. On the
other hand, we also found that 53 out of 54 calls to
unregister filesystem do not save the return error
codes. Assuming that most kernel developers are essen-
tially competent, this suggests that it may actually be safe
to not check the error code returned from this particular
function.

To quantify inconsistent calls, we define the in-
consistent call frequency of a function as the ratio
of bad calls over all error-related calls to the func-
tion, and correlate this frequency with the number of
bad calls to the function. For example, the incon-
sistent call frequencies for ide setup pci blockdev
and unregister filesystem are 3% (1/33) and 98%
(53/54) respectively and the numbers of bad calls are 1
and 53 respectively.

Figure 6 plots the cumulative distribution function of
this behavior. The graph could be seen as a means to
prioritize which bad calls to fix first. Bad calls that fall
below the 20% mark could be treated as corner cases,
i.e. we should be suspicious on one bad call in the midst

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association218

TU Dresden EIO: Error Checking is Occasionally Correct

CHARACTERISTICS

15

of four good calls to the same function. On the other
hand, bad calls that fall above the 80% mark could hint
that either different developers make the same mistake
and ignore it, or it is probably safe to make such a mis-
take.

One perplexing phenomenon visible in the graph is
that around 871 bad calls fall above the 50% mark. In
other words, they cannot be considered as corner-case
bugs; the developers might be aware of these bad calls,
but probably just ignore them. One thing we have learned
from our recent work on file system code is that if a file
system does not know how to recover from a failure, it
has the tendency to just ignore the error code. For exam-
ple, ext3 ignores write failures during checkpointing sim-
ply because it has no recovery mechanism (e.g., chained
transactions [12]) to deal with such failures. Thus, we
suspect that there are deeper design shortcomings be-
hind poor error code handling; error code mismanage-
ment may be as much symptom as disease.

Our analysis is similar to the work of Engler et al. on
findings bugs automatically [8]. In their work, they use
existing implementation to imply beliefs and facts. Ap-
plying their analysis to our case, the bad calls that fall
above the 80% mark might be considered as good calls.
However, since we are analyzing the specific problem
of error propagation, we use that semantic knowledge
and demand a discipline that promotes checking an error
code in all circumstances, rather than one that follows
majority rules.

4.4 Characteristics of Error Channels
Finally, we study whether the characteristic of an error
channel has an impact on the robustness of error code
propagation in that channel. In particular, we explore
two characteristics of error channels: one based on the
error propagation distance and one based on the location
distance (inter- vs. intra-file calls).

With the first characteristic, we would like to find out
whether error codes are lost near the generation endpoint
or somewhere in the middle of the propagation chain.
We distinguish two calls: direct-error and propagate-
error calls. In a direct-error call, the callee is an error-
generation endpoint. In a propagate-error call, the callee
is not a generation endpoint; rather it is a function that
propagates an error code from one of the functions that it
calls, i.e. it is a function in the middle of the propagation
chain. Next, we define a bad direct-error (or propagate-
error) call as a direct-error (or propagate-error) call that
does not save the returned error code.

Initially, we assumed that the frequency of bad
propagate-error calls would be higher than that of bad
direct-error calls; we assumed error codes tend to be
dropped in the middle of the chain rather than near the
generation endpoint. It turns out that the number of bad

Bad EC Frac.
Calls Calls (%)

File Systems
Inter-module 307 1944 15.8
Inter-file 367 2786 13.2
Intra-file 159 2548 6.2

Storage Drivers
Inter-module 48 199 24.1
Inter-file 92 495 18.6
Intra-file 180 1050 17.1

Table 5: Calls based on location distance. The ta-
ble shows that the fraction of bad calls in inter-module calls is
higher than the one in inter-file calls. Similarly, inter-file calls
are less robust than intra-file calls. Note that “inter-file” refers
to cross-file calls within the same module. Inter-file calls across
different modules are categorized as inter-module.

direct-error and propagate-error calls are similar for file
system code but the other way around for storage driver
code. In particular, for file systems, the ratio of bad over
all direct-error calls is 10%, and the ratio of bad over all
propagate-error calls is 14%. For storage drivers, they
are 20% and 15% respectively.

Lastly, in the second characteristic, we categorized
calls based on the location distance between a caller
and a callee. In particular, we distinguish three calls:
inter-module, inter-file (but within the same module),
and intra-file calls. Table 5 reports that intra-file calls
are more robust than inter-file calls, and inter-file calls
are more robust than intra-file calls. For example, out of
1944 inter-module calls in which error codes propagate
in file system, 307 (16%) of them are bad calls. How-
ever, out of 2786 inter-file calls within the same module,
there are only 367 (13%) bad calls. Intra-file calls only
exhibit 6% bad calls. The same pattern occurs in storage
device drivers. Thus, we conclude that the location dis-
tance between the caller and the callee plays a role in the
robustness of the call.

5 Future Work
In this section, we discuss some of the issues we previ-
ously deferred regarding how to build complete and ac-
curate static error propagation analysis. In general, we
plan to refine our static analysis with the intention of un-
covering more violations within the file and storage sys-
tem stack.

5.1 Overwritten Error Codes
In this paper, we examined broken channels that are
caused by unsaved and unchecked error codes; broken
channels can also be caused by overwritten error codes,

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 219

■ Where are error codes
dropped?

■ No clear pattern:

■ File systems:

10% direct, 14% later

■ Storage drivers:

20% direct, 15% later

■ Call distance?

TU Dresden EIO: Error Checking is Occasionally Correct

SUMMARY
■ Erros are not propagated correctly:

Result: 1153 calls drop error (that‘s 13%)

■ Complex file systems are more likely to
propagate errors incorrectly

■ Popular file systems not the most robust

■ Write errors consistently ignored:

■ May cause silent failure

■ Often no easy way to handle
16

TU Dresden EIO: Error Checking is Occasionally Correct

DISCUSSION

17

■ EDP catches only simple bugs, but reports
many violations in all Linux file systems.

■ Are the violations really that bad?

■ Is OK to ignore write errors after all?

■ Is ignoring write errors the disease or in
fact a symptom of higher-level problems?

■ Half the code is for error checking, is C the
right language for that?

