
Faculty of Computer Science Institute for System Architecture, Operating Systems Group

Speculative execution in a distributed
file system

–Dresden, 2010-09-01

E. B. Nightingale, P. M. Chen, J. Flinn

 2 / 15

Distributed File Systems

• NFS (v3), AFS, Coda

• Carefully crafted protocols
– need to handle concurrent accesses
– synchronous low performance→
– optimization: weaker consistency

 3 / 15

Synchronous NFS

 4 / 15

The case for speculation

• Concurrent access is an exception.

• FS client can normally predict the outcome of
an operation.

– Caches

• Cheap checkpointing/restart mechanisms
– Often faster than network roundtrips

• Abundant resources
– Can spend memory on checkpoints and cycles

on bookkeeping.

 5 / 15

Speculation interface for Linux

• Needs:
– Prevent state externalization
– Cheap checkpoint/restart mechanism
– Track speculation dependencies across

processes

• Spread function calls across the kernel
– create_speculation()

– commit_speculation()

– fail_speculation()

• ~ 7.500 LoC

 6 / 15

Checkpoint & restore

• Checkpoint
– fork()

– plus additional state (pending signals,
locks, timers, ...)

– don't make child runnable

• Restart
– Force parent to exit silently
– Modify forked child to look like parent at

time of checkpoint (adapt PID, FDs, signal
state, …)

– Run child

 7 / 15

Speculation

• Upon speculative system call
– Create speculation data structure

• track objects depending on this
speculation

• used later for process deps
– Create undo log

• for rollback on failure

• Optimization: use one log for a sequence of
speculations

– Rollback cost vs. bookkeeping cost

 8 / 15

Preventing state externalization

• Goal: no one sees speculative state before
it is committed.

– Apart from speculative processes.

• Always block a process that tries to access
speculative state.

– Must do for non-speculative processes.
– Can do better for speculative ones.

 9 / 15

Avoiding blocking

• Allow
– syscalls that don't modify state – getpid
– syscalls that only modify process-local state –
dup2

• Speculative operations on file systems
– SPEC flag set upon open()

• If set, try to speculate from cached data
• Else, block

• Buffer I/O that would otherwise become visible, e.g.
output to a TTY.

 10 / 15

Tracking process dependencies

• Track propagation of speculative state through
– pipes/FIFOs

• log r/w operations
• reader becomes speculative, too

– sockets
• buffer until committed

– signals
• make recipient speculative
• might currently be in non-spec syscall
• queue signal and deliver upon syscall

return
• deliver some signals immediately

 11 / 15

Depending speculations

 12 / 15

Speculative distributed FS

• Adapt server:
– speculative calls include hypothesis
– counter-check hypothesis before carrying

out actions
– keep speculation log at server

• Speculative group commits

• Implemented 2 FS: SpecNFS + BlueFS

 13 / 15

Evaluation

 14 / 15

Rollback cost

 15 / 15

Discussion

• Review speculation in the context of
– power sync. protocols allow for turning off →

resources while waiting
– 10GB ethernet
– crashes
– massively parallel applications

• no IPC or shared memory support
• Chen, Flinn @ ASPLOS 2010: “Respec: Efficient

Online Multiprocessor Replay via Speculation and
External Determinism”

• Group commit at server side w/o speculation?

	Hier steht der Titel der Power Point Präsentation.
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

