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Distributed File Systems

• NFS (v3), AFS, Coda

• Carefully crafted protocols 
– need to handle concurrent accesses
– synchronous  low performance→
– optimization: weaker consistency
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Synchronous NFS
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The case for speculation

• Concurrent access is an exception.

• FS client can normally predict the outcome of 
an operation.

– Caches

• Cheap checkpointing/restart mechanisms
– Often faster than network roundtrips

• Abundant resources
– Can spend memory on checkpoints and cycles 

on bookkeeping.
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Speculation interface for Linux

• Needs:
– Prevent state externalization
– Cheap checkpoint/restart mechanism
– Track speculation dependencies across 

processes

• Spread function calls across the kernel
– create_speculation()

– commit_speculation()

– fail_speculation()

• ~ 7.500 LoC
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Checkpoint & restore

• Checkpoint
– fork()

– plus additional state (pending signals, 
locks, timers, ...)

– don't make child runnable

• Restart
– Force parent to exit silently
– Modify forked child to look like parent at 

time of checkpoint (adapt PID, FDs, signal 
state, …)

– Run child
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Speculation

• Upon speculative system call
– Create speculation data structure

• track objects depending on this 
speculation

• used later for process deps
– Create undo log

• for rollback on failure

• Optimization: use one log for a sequence of 
speculations

– Rollback cost vs. bookkeeping cost
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Preventing state externalization

• Goal: no one sees speculative state before 
it is committed.

– Apart from speculative processes.

• Always block a process that tries to access 
speculative state.

– Must do for non-speculative processes.
– Can do better for speculative ones.
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Avoiding blocking

• Allow
– syscalls that don't modify state  – getpid
– syscalls that only modify process-local state – 
dup2

• Speculative operations on file systems
– SPEC flag set upon open()

• If set, try to speculate from cached data
• Else, block

• Buffer I/O that would otherwise become visible, e.g. 
output to a TTY.
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Tracking process dependencies

• Track propagation of speculative state through
– pipes/FIFOs

• log r/w operations
• reader becomes speculative, too

– sockets
• buffer until committed

– signals 
• make recipient speculative
• might currently be in non-spec syscall
• queue signal and deliver upon syscall 

return
• deliver some signals immediately
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Depending speculations
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Speculative distributed FS

• Adapt server:
– speculative calls include hypothesis 
– counter-check hypothesis before carrying 

out actions
– keep speculation log at server

• Speculative group commits

• Implemented 2 FS: SpecNFS + BlueFS



 13 / 15

Evaluation
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Rollback cost
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Discussion

• Review speculation in the context of
– power  sync. protocols allow for turning off →

resources while waiting
– 10GB ethernet
– crashes
– massively parallel applications

• no IPC or shared memory support
• Chen, Flinn @ ASPLOS 2010: “Respec: Efficient 

Online Multiprocessor Replay via Speculation and 
External Determinism”

• Group commit at server side w/o speculation?
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