
ENERGY-AWARE ADAPTATION
FOR MOBILE APPLICATIONS

Jason Flinn and M. Satyanarayanan

MOTIVATION

• energy is important in mobile-use scenarios

• we all know…

• applications can modify behavior to conserve energy

• dynamically at runtime

• collaboration between OS and applications

17th ACM Symposium on Operating Systems Principles (SO SP ’99),
Published as Operating Systems Review, 34(5):48–63, Dec. 1999

Energy-aware adaptation for mobile applications
Jason Flinn and M. Satyanarayanan

School of Computer Science
Carnegie Mellon University

Abstract

In this paper, we demonstrate that a collaborative relation-
ship between the operating system and applications can be
used to meet user-specified goals for battery duration. We
first show how applications can dynamically modify their be-
havior to conserve energy. We then show how the Linux op-
erating system can guide such adaptation to yield a battery-
life of desired duration. By monitoring energy supply and
demand, it is able to select the correct tradeoff between en-
ergy conservation and application quality. Our evaluation
shows that this approach can meet goals that extend battery
life by as much as 30%.

1 Introduction

Energy is a vital resource for mobile computing. There is
growing consensus that advances in battery technology and
low-power circuit design cannot, by themselves, meet the
energy needs of future mobile computers— the higher levels
of the system must also be involved [1, 7].

In this paper, we explore how applications can dynam-
ically modify their behavior to conserve energy. To guide
such adaptation, the operating system monitors energy sup-
ply and demand. When energy is plentiful, application be-
havior is biased toward a good user experience; when it is
scarce, the behavior is biased toward energy conservation.

To validate the energy benefits of adaptation, we present
results from a detailed study of applications running on the
Odyssey platform for mobile computing. Our results show
energy reductions in the range of 7% to 72%, with a mean
of 36%. Combined with hardware power management, we
achieve overall reductions between 31% and 76%, with a
mean of 50%— in effect, doubling battery life.
This research was supported by the National Science Foundation (NSF) under grant
number CCR-9901696, and the Air Force Materiel Command (AFMC) under DARPA
contract number F19628-96-C-0061. Addition support was provided by IBM. The
views and conclusions contained here are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either express
or implied, of NSF, AFMC, DARPA, IBM, CMU, or the U.S. Government.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SOSP-17 12/1999 Kiawah Island, SC

c 1999 ACM 1-58113-140-2/99/0012. . . $5.00

Our measurements also suggest a novel approach to re-
ducing the energy drain of the display, an important but dif-
ficult challenge. Using this approach, we project a further
energy reduction ranging from 7% to 29%.

Finally, we show how the operating system can con-
trol adaptation by concurrent applications to give a battery
life of user-specified duration. To perform this control, we
have extended Odyssey to predict future energy demand
from measurements of past usage. When there is substantial
mismatch between predicted demand and available energy,
Odyssey notifies applications to adapt. Using this approach,
we demonstrate that Odyssey can extend battery-life to meet
user-specified goals that vary by as much as 30%.

We begin with brief overviews of PowerScope, a tool we
built to profile energy usage, and Odyssey. Three major sec-
tions follow: Section 3, on energy savings through adapta-
tion; Section 4, on reducing display energy usage; and Sec-
tion 5, on achieving a desired battery life. We close with a
summary of related work and future plans.

2 Background

2.1 The PowerScope energy profiler
PowerScope is a tool for mapping energy consumption to
specific software components. Its functionality and design
are inspired by CPU profilers such as and that
help expose code components wasteful of processor cycles.
Using PowerScope, one can determine what fraction of the
total energy consumed during a certain time period is due
to specific processes. Further, one can determine the energy

Profiling
Computer

Da ta
Collec tion
Computer

System
Monitor

Energy
Monitor

Dig ita l
Multimeter

Apps

Power
Sourc e

HP-IB
Bus

Correla ted
Current Levels

PC / PID
Samples

Trigger

This hardware setup is used during PowerScope data col-
lection. A data collection computer distinct from the profiling
computer controls the multimeter and stores samples from it.
Later, program counter and process id samples are correlated
offline with current levels to yield energy profiles.

Figure 1. Data collection in PowerScope

48

This figure shows a sample energy profile. The first table sum-
marizes the energy usage by process, while the table below
shows a portion of the detailed profile for a single process.
Only part of the full profile is shown.

Figure 2. Example of an energy profile

consumption of individual procedures within a process. By
providing fine-grained feedback, PowerScope helps expose
system components most responsible for energy consump-
tion. Since PowerScope was recently described in detail [8],
we only provide a brief overview here.

PowerScope uses statistical sampling to profile the en-
ergy usage of a computer system. To reduce overhead, pro-
files are generated in two stages. During the data collection
stage, shown in Figure 1, the tool samples power consump-
tion as well as the program counter (PC) and process identi-
fier (PID) of the code executing on the profiling computer. A
digital multimeter, currently a Hewlett Packard 3458a, sam-
ples the current drawn by the profiling computer through its
external power input. Since the input voltage on computers
is well-controlled (to within 0.25% in our measurements),
current samples alone are adequate to infer energy consump-
tion. The output of this stage consists of a sequence of cur-
rent level samples and a correlated sequence of PC/PID sam-
ples. In a later off-line stage, PowerScope combines these
sequences with symbol table information from binaries and
shared libraries on the profiling computer. The result is an
energy profile such as that shown in Figure 2.

2.2 The Odyssey platform for adaptation
The design rationale and architecture of Odyssey were pre-
sented in an earlier paper [17]. Adaptation in Odyssey in-
volves the trading of data quality for resource consumption.
For example, a client playing full-color video data from a
server could switch to black and white video when band-
width drops, rather than suffering lost frames. Similarly, a
map application might fetch maps with less detail rather than
suffering long transfer delays for full-quality maps.

Odyssey captures this notion of data degradation through
an attribute called fidelity, that defines the degree to which
data presented at a client matches the reference copy at a

Interceptor

Application

Odyssey

Kernel

Warden2

Warden3

Vi
ce
ro
y

Warden1

Figure 3. Odyssey architecture

server. Fidelity is a type-specific notion since different kinds
of data can be degraded differently. Since the minimal level
of fidelity acceptable to the user can be both time and appli-
cation dependent, Odyssey allows each application to spec-
ify the fidelity levels it currently supports.

Odyssey supports concurrent adaptation by diverse ap-
plications. The client architecture providing this support is
shown in Figure 3. Odyssey is conceptually part of the op-
erating system, even though it is implemented in user space
for simplicity. The viceroy is the Odyssey component re-
sponsible for monitoring the availability of resources and
managing their use. Code components called wardens en-
capsulate type-specific functionality. There is one warden
for each data type in the system. We have built four adap-
tive applications on top of Odyssey: a video player, a speech
recognizer, a map viewer, and a Web browser. Such multi-
media and speech-enabled applications are of growing im-
portance in mobile computing, although they are not yet as
common as spreadsheets and word processors. Relevant de-
tails of these applications are presented later.

Odyssey is integrated into Linux as a new VFS file sys-
tem, along with a set of API extensions for expressing re-
source expections. If resource levels stray beyond an appli-
cation’s expectation, Odyssey notifies it through an upcall.
The application then adjusts its fidelity to match the new re-
source level, and communicates a new set of expectations
to Odyssey. Some applications, such as our Web browser
and map viewer, use a proxy to avoid modifications to appli-
cation source code. Other applications, such as our video
player and speech recognizer, are modified to interact di-
rectly with Odyssey.

The initial Odyssey prototype only supported network
bandwidth adaptation. The work reported here extends
Odyssey to support energy adaptation.

3 Energy impact of fidelity

Does lowering data fidelity yield significant energy savings?
This was the crucial question facing us when we began this
work. Incorporating support for energy-aware adaptation
into Odyssey is futile if the potential savings are meager.

49

4 CASE STUDIES

1. Video Player

2. Speech Recognizer

3. Map Viewer

4. Web Browser

ADAPTIVITY

fidelity = utility?

VIDEO PLAYER

Video 1 Video 2 Video 3 Video 4
0

500

1000

1500

2000

2500

En
er

gy
 (J

ou
le

s) Idle
Xanim
X Server
Odyssey
WaveLAN
Kernel

Ba
se

lin
e

Ha
rd

wa
re

-O
nly

Po
we

r M
gm

t.
Pr

em
ier

e-
B

Pr
em

ier
e-

C
Re

du
ce

d W
ind

ow
Co

mb
ine

d

This figure shows the energy used to display four QuickTime/Cinepak videos from 127 to 226 seconds in length, ordered from right
to left above. For each video, the first bar shows energy usage without hardware power management or fidelity reduction. The
second bar shows the impact of hardware power management alone. The next two show the impact of lossy compression. The
fifth shows the impact of reducing the size of the display window. The final bar shows the combined effect of lossy compression
and window size reduction. The shadings within each bar detail energy usage by software component. Each value is the mean
of five trials — the error bars show 90% confidence intervals.

Figure 6. Energy impact of fidelity for video playing

Xanim
Video
Server

Viceroy

Video
Warden

Figure 5. Odyssey video player

lossy compression used to encode a video clip, and varying
the size of the window in which it is displayed. There are
multiple tracks of each video clip on the server, each gen-
erated off-line from the full-fidelity video clip using Adobe
Premiere. They are identical to the original except for size
and the level of lossy compression used in frame encoding.

3.3.2 Results
Figure 6 shows the energy used to display four videos at dif-
ferent fidelities. At baseline fidelity, much energy is con-
sumed while the processor is idle because of the limited
bandwidth of the wireless network — not enough video data
is transmitted to saturate the processor. Most of the remain-
ing energy is consumed by asynchronous network interrupts,
the Xanim video player, and the X server.

For the four video clips, hardware-only power manage-
ment reduces energy consumption by a mere 9–10%. There
is little opportunity to place the network in standby mode
since it is nearly saturated. Most of the reduction is due
to disk power management — the disk remains in standby
mode for the entire duration of an experiment.

The bars labelled Premiere-B and Premiere-C in Figure 6
show the impact of lossy compression. Premiere-C, at the
highest compression, consumes 16–17% less energy than
hardware-only power management. Note that these gains
are understated due to the bandwidth limitation imposed by
our wireless network. With a higher-bandwidth network, we
could raise baseline fidelity and thus transmit better video
quality when energy is plentiful. The relative energy savings
of Premiere-C would then be higher.

By examining the shadings of each bar in Figure 6, we
see that compression significantly reduces the energy used
by Xanim, Odyssey and the WaveLAN device driver. How-
ever, the energy used by the X server is almost completely
unaffected by compression. We conjecture that this is be-
cause video frames are decoded before they are given to the
X server, and the size of this decoded data is independent of
the level of lossy compression.

To validate this conjecture, we measured the effect of
halving both the height and width of the display window,
effectively introducing a new dimension of fidelity. As Fig-
ure 6 shows, shrinking the window size reduces energy con-
sumption 19–20% beyond hardware-only power manage-
ment. The shadings on the bars confirm that reducing win-
dow size significantly decreases X server energy usage. In
fact, within the bounds of experimental error, X server en-
ergy consumption is proportional to window area.

Finally, we examined the effect of combining Premiere-
C encoding with a display window of half the baseline height
and width. This results in a 28–30% reduction in energy us-
age relative to hardware-only power management. Relative
to baseline, using all the techniques (hardware, Premiere-C,
and reduced window) together yields about a 35% reduction.

51

SPEECH RECOGNITION

Utterance 1 Utterance 2 Utterance 3 Utterance 4
0

50

100

150

En
er

gy
 (J

ou
le

s)

Idle
Janus
Odyssey
WaveLAN
Kernel

Ba
se

lin
e

Ha
rd

wa
re

-O
nly

Po
we

r M
gm

t.
Re

du
ce

d M
od

el

Re
mo

te
Re

mo
te

- R
ed

uc
ed

 M
od

el

Hy
br

id
Hy

br
id

- R
ed

uc
ed

 M
od

el

This figure shows the energy used to recognize four spoken utterances from one to seven seconds in length, ordered from right to
left above. For each utterance, the first bar shows energy consumption without hardware power management or fidelity reduction.
The second bar shows the impact of hardware power management alone. The remaining bars show the additional savings
realized by adaptive strategies. The shadings within each bar detail energy usage by activity. Each measurement is the mean of
five trials — the error bars show 90% confidence intervals.

Figure 8. Energy impact of fidelity for speech recognition

3.5 Map viewer
3.5.1 Description
The third application that we measured was an adaptive map
viewer named Anvil. As shown in Figure 9, Anvil fetches
maps from a remote server via Odyssey and displays them on
the client. Fidelity can be lowered in two ways: filtering and
cropping. Filtering eliminates fine detail and less important
features (such as secondary roads) from a map. Cropping
preserves detail, but restricts data to a geographic subset of
the original map. The client annotates the map request with
the desired amount of filtering and cropping. The server per-
forms any requested operations before transmitting the map
data to the client.

Anvil
Map
Server

Viceroy

Map
Warden

Figure 9. Odyssey map viewer

3.5.2 Results
We measured the energy used by the client to fetch and dis-
play maps of four different cities. Viewing a map differs
from the two previous applications in that a user typically
needs a non-trivial amount of time to absorb the contents of
a map after it has been displayed. This period, which we re-
fer to as think time, should logically be viewed as part of the

application’s execution since energy is consumed in keeping
the map visible. In contrast, the user needs negligible time
after the display of the last frame or the recognition of an
utterance to complete use of the video or speech application.

Think time is likely to depend on both the user and the
map being displayed. Our approach to handling this vari-
ability was to use an initial value of 5 seconds and then per-
forming sensitivity analysis for think times of 0, 10 and 20
seconds. For brevity, Figure 10 only presents detailed results
for the 5 second case; for other think times, we present only
the summary information in Figure 11.

The baseline bars in Figure 10 show that most of the en-
ergy is consumed while the CPU is idle; a significant portion
of this goes to keeping the display backlit during the five
second think time. The shadings on the bars indicate that
network communication is a second significant drain on en-
ergy. The comparatively larger confidence intervals for this
application result from variation in the time required to fetch
a map over the wireless network.

Hardware-only power management reduces energy con-
sumption by about 9–19% relative to the baseline. Although
there is little opportunity for network power management
while the map is being fetched, the network can remain in
standby mode during think time. Since the disk is never
used, it can always remain in standby mode.

The third and fourth bars of each data set show the effect
of fidelity reduction through two levels of filtering. One fil-
ter omits minor roads, while the more aggressive filter omits
both minor and secondary roads. The savings from the mi-
nor road filter range from 6–51% relative to hardware-only
power management. The corresponding figure for the sec-
ondary road filter is 23–55%.

53

MAP VIEWER

San Jose Allentown Boston Pittsburgh
0

50

100

150

En
er

gy
 (J

ou
le

s)

Idle
Anvil
X Server
Odyssey
WaveLAN
Kernel

Ba
se

lin
e

Ha
rd

wa
re

-O
nly

Po
we

r M
gm

t.
Mi

no
r R

oa
d F

ilte
r

Se
co

nd
ar

y R
oa

d F
ilte

r

Cr
op

pe
d

Cr
op

pe
d -

 M
ino

r R
oa

d F
ilte

r

Cr
op

pe
d -

 S
ec

on
da

ry
Ro

ad
 F

ilte
r

This figure shows the energy used to view four U.S.G.S. maps. For each map, the first bar shows energy usage without hardware
power management or fidelity reduction, with a 5 second think time. The second bar shows the impact of hardware power
management alone. The remaining bars show the additional savings realized by degrading map fidelity. The shadings within each
bar detail energy usage by activity. Each measurement is the mean of ten trials—the error bars are 90% confidence intervals.

Figure 10. Energy impact of fidelity for map viewing

0 5 10 15 20 25

Think Time (seconds)

0

50

100

150

200

250

En
er

gy
 (J

ou
le

s)

Baseline
Hardware-Only Power Mgmt.
Lowest Fidelity

This figure shows how the energy used to view the San Jose
map from Figure 10 varies with think time. The data points
show measured energy usage. The solid, dashed and dotted
lines represent linear models for energy usage for the base-
line, hardware-only power management and lowest fidelity
cases. The latter combines filtering and cropping, as in the
rightmost bars of Figure 10. Each measurement is the mean
of ten trials — the error bars are 90% confidence intervals.

Figure 11. Effect of user think time for map viewing

The fifth bar of each data set shows the effect of lower-
ing fidelity by cropping a map to half its original height and
width. Energy usage at this fidelity is 14–49% less than with
hardware-only power management. In other words, crop-
ping is less effective than filtering for these samples. Com-
bining cropping with filtering results in an energy savings
of 36–66% relative to hardware-only power management, as
shown by the rightmost bars of each data set. Relative to the
baseline, this is a reduction of 46–70%. There is little sav-
ings left to be extracted through software optimization —
almost all the energy is consumed in the idle state.

After examining energy usage at 5 seconds of think time,

we repeated the above experiments at think times of 0, 10
and 20 seconds. At any given fidelity, energy usage, Et in-
creases with think time, t. We expected a linear relationship:
Et E0 t PB, where E0 is the energy usage for this fidelity
at zero think time and PB is the background power consump-
tion on the client (5.6W from Figure 4).

Figure 11 confirms that a linear model is indeed a good
fit. This figure plots the energy usage for four different val-
ues of think time for three cases: baseline, hardware-only
power management, and lowest fidelity. The divergent lines
for the first two cases show that the energy reduction from
hardware-only power management scales linearly with think
time. The parallel lines for the second and third cases show
that fidelity reduction achieves a constant benefit, indepen-
dent of think time. The complementary nature of these two
approaches is thus well illustrated by these measurements.

3.6 Web browser
3.6.1 Description
Our fourth application is an adaptive Web browser based on
Netscape Navigator, as shown in Figure 12. In this applica-

Distillation
ServerNetscape

Viceroy

Web
Warden

to
Web
serversPr

ox
y Distillation

Server

Figure 12. Odyssey Web browser

54

THINK TIME

San Jose Allentown Boston Pittsburgh
0

50

100

150

En
er

gy
 (J

ou
le

s)

Idle
Anvil
X Server
Odyssey
WaveLAN
Kernel

Ba
se

lin
e

Ha
rd

wa
re

-O
nly

Po
we

r M
gm

t.
Mi

no
r R

oa
d F

ilte
r

Se
co

nd
ar

y R
oa

d F
ilte

r

Cr
op

pe
d

Cr
op

pe
d -

 M
ino

r R
oa

d F
ilte

r

Cr
op

pe
d -

 S
ec

on
da

ry
Ro

ad
 F

ilte
r

This figure shows the energy used to view four U.S.G.S. maps. For each map, the first bar shows energy usage without hardware
power management or fidelity reduction, with a 5 second think time. The second bar shows the impact of hardware power
management alone. The remaining bars show the additional savings realized by degrading map fidelity. The shadings within each
bar detail energy usage by activity. Each measurement is the mean of ten trials—the error bars are 90% confidence intervals.

Figure 10. Energy impact of fidelity for map viewing

0 5 10 15 20 25

Think Time (seconds)

0

50

100

150

200

250

En
er

gy
 (J

ou
le

s)
Baseline
Hardware-Only Power Mgmt.
Lowest Fidelity

This figure shows how the energy used to view the San Jose
map from Figure 10 varies with think time. The data points
show measured energy usage. The solid, dashed and dotted
lines represent linear models for energy usage for the base-
line, hardware-only power management and lowest fidelity
cases. The latter combines filtering and cropping, as in the
rightmost bars of Figure 10. Each measurement is the mean
of ten trials — the error bars are 90% confidence intervals.

Figure 11. Effect of user think time for map viewing

The fifth bar of each data set shows the effect of lower-
ing fidelity by cropping a map to half its original height and
width. Energy usage at this fidelity is 14–49% less than with
hardware-only power management. In other words, crop-
ping is less effective than filtering for these samples. Com-
bining cropping with filtering results in an energy savings
of 36–66% relative to hardware-only power management, as
shown by the rightmost bars of each data set. Relative to the
baseline, this is a reduction of 46–70%. There is little sav-
ings left to be extracted through software optimization —
almost all the energy is consumed in the idle state.

After examining energy usage at 5 seconds of think time,

we repeated the above experiments at think times of 0, 10
and 20 seconds. At any given fidelity, energy usage, Et in-
creases with think time, t. We expected a linear relationship:
Et E0 t PB, where E0 is the energy usage for this fidelity
at zero think time and PB is the background power consump-
tion on the client (5.6W from Figure 4).

Figure 11 confirms that a linear model is indeed a good
fit. This figure plots the energy usage for four different val-
ues of think time for three cases: baseline, hardware-only
power management, and lowest fidelity. The divergent lines
for the first two cases show that the energy reduction from
hardware-only power management scales linearly with think
time. The parallel lines for the second and third cases show
that fidelity reduction achieves a constant benefit, indepen-
dent of think time. The complementary nature of these two
approaches is thus well illustrated by these measurements.

3.6 Web browser
3.6.1 Description
Our fourth application is an adaptive Web browser based on
Netscape Navigator, as shown in Figure 12. In this applica-

Distillation
ServerNetscape

Viceroy

Web
Warden

to
Web
serversPr

ox
y Distillation

Server

Figure 12. Odyssey Web browser

54

WEB BROWSER

Image 1 Image 2 Image 3 Image 4
0

20

40

60

En
er

gy
 (J

ou
le

s) Idle
Netscape
Proxy
X Server
Odyssey
WaveLAN
Kernel

Ba
se

lin
e

Ha
rd

wa
re

-O
nly

Po
we

r M
gm

t.
JP

EG
-7

5
JP

EG
-5

0
JP

EG
-2

5
JP

EG
-5

This figure shows the energy used to display four GIF images from 110B to 175KB in size, ordered from right to left above. For
each image, the first data bar shows energy consumption at highest fidelity without hardware power management, assuming a
think time of five seconds. The second bar shows the impact of hardware power management alone. The remaining bars show
energy usage as fidelity is lowered through increasingly aggressive lossy JPEG compression. The shadings within each bar detail
energy usage by activity. Each measurement is the mean of ten trials — the error bars show 90% confidence intervals.

Figure 13. Energy impact of fidelity for Web browsing

tion, Odyssey and a distillation server located on either side
of a variable-quality network mediate access to Web servers.
Requests from an unmodified Netscape browser are routed to
a proxy on the client that interacts with Odyssey. After anno-
tating the request with the desired level of fidelity, Odyssey
forwards it to the distillation server which transcodes images
to lower fidelity using lossy JPEG compression. This is sim-
ilar to the strategy described by Fox et al [9], except that
control of fidelity is at the client.

3.6.2 Results
As with the map application, a user needs some time after
an image is displayed to absorb its contents. We therefore
include energy consumed during user think time as part of
the application. We use a baseline value of five seconds and
perform sensitivity analysis for 0, 10 and 20 seconds.

Figure 13 presents our measurements of the energy used
to fetch and display four GIF images of varying sizes.
Hardware-only power management achieves reductions of
22–26%. The shadings on the first and second bars of each
data set indicate that most of this savings occurs in the idle
state, probably during think time.

The energy benefits of fidelity reduction are disappoint-
ing. As Figure 13 shows, the energy used at the lowest
fidelity is merely 4–14% lower than with hardware-only
power management; relative to baseline, this is a reduc-
tion of 29–34%. Of course, these results apply only to the
specific form of fidelity reduction used in our experiments,
namely transcoding using lossy JPEG compression.

The effect of varying think time is shown in Figure 14.
The linear model introduced in Section 3.5.2 fits observa-
tions well for all three cases: baseline, hardware-only power

0 5 10 15 20 25

Think Time (seconds)

0

50

100

150

200

En
er

gy
 (J

ou
le

s)

Baseline
Hardware-Only Power Mgmt.
Lowest Fidelity

This figure shows how the energy used to display Image 1
from Figure 13 varies with user think time. The data points
on the graph show measured energy usage for user think
times of 0, 5, 10, and 20 seconds. The solid, dashed and
dotted lines represent linear models for energy consumption
for the baseline, hardware-only power management and low-
est fidelity cases. Each measurement represents the mean of
ten trials — the error bars are 90% confidence intervals.

Figure 14. Effect of user think time for Web browsing

management and lowest fidelity. The close spacing of the
lines for the two latter cases reflects the small energy sav-
ings available through fidelity reduction. The divergence of
the lines for the first two cases shows the importance of hard-
ware power management during think time.

3.7 Effect of concurrency
How does concurrent execution affect energy usage? One
can imagine situations in which total energy usage goes

55

GOAL-DIRECTED
ADAPTATION

All our experiments used an initial energy value of
12,000 J. This lasts 19:27 minutes when applications operate
at highest fidelity, and 27:06 minutes at lowest fidelity. This
represents a 39.3% extension in battery life. Our choice of
initial energy value was deliberately small, so that experi-
ments could be conducted in a reasonable amount of time.
The value of 12,000 J is only about 14% of the nominal en-
ergy in the IBM 560X battery. Extrapolating to full nominal
energy, our workload would have run for 2:18 hours at high-
est fidelity, and 3:13 hours at lowest fidelity.

5.2.2 Results
Figure 19 shows detailed results from two typical experi-
ments: one with a 20 minute goal, and the other with a 26
minute goal. The top graph shows how the supply of en-
ergy and Odyssey’s estimate of future demand change over
time. The graph confirms that estimated demand tracks sup-
ply closely for both experiments.

The four bottom graphs of Figure 19 show how the fi-
delity of each application varies during the two experiments.
For the 20 minute goal, the high priority Web and map ap-
plications remain at full fidelity throughout the experiment;
the video degrades slightly; and speech runs mostly at low
fidelity. For the 26 minute goal, the highest priority Web ap-
plication runs mostly at the highest fidelity, while the other
three applications run mostly at their lowest fidelities. For
both goals, applications are more stable at the beginning of
the experiment, and exhibit greater agility as energy drains.

Figure 20 summarizes the results of our experiments for
goals of 20, 22, 24, and 26 minutes. These results confirm
that Odyssey is doing a good job of energy adaptation. The
desired goal was met in every trial of each experiment. In all
cases, residual energy was very low, with the largest residue
being only 1.2% of the initial energy value. The average
number of adaptations by applications is generally low, but
there are some cases where it is high. This is an artifact of
the small initial energy value, since the system is designed
to exhibit greater agility when energy is scarce.

5.3 Sensitivity to half-life
Since the choice of a smoothing function was an important
factor in the prototype design, we examined the performance
of our prototype using several different values for the half-
life used in calculating !. In each experiment, we displayed
a half-hour video clip, and specified that the energy supply
should last for the entire video.

0 500 1000 1500

Elapsed Time (s)

0

5000

10000

15000

En
er

gy
 (J

ou
le

s)

Supply - 26 Minute Goal
Demand - 26 Minute Goal
Supply - 20 Minute Goal
Demand - 20 Minute Goal

0 500 1000 1500

Elapsed Time (s)

Max

Min

Sp
ee

ch
 F

id
el

ity

26 Minute Goal
20 Minute Goal

0 500 1000 1500

Elapsed Time (s)

Max

Min

Vi
de

o
Fi

de
lit

y

0 500 1000 1500

Elapsed Time (s)

Max

MinM
ap

 F
id

el
ity

0 500 1000 1500

Elapsed Time (s)

Max

MinW
eb

 F
id

el
ity

This figure shows how Odyssey meets user-specified goals
for battery durations of 20 and 26 minutes when running the
composite and video applications described in Section 3.7.
The top graph shows how the supply of energy and the esti-
mated demand change over time, while the other graphs show
the corresponding changes in application fidelity. The appli-
cations are prioritized with Speech having the lowest priority,
and Video, Map, and Web having successively higher priority.

Figure 19. Example of goal-directed adaptation

60

All our experiments used an initial energy value of
12,000 J. This lasts 19:27 minutes when applications operate
at highest fidelity, and 27:06 minutes at lowest fidelity. This
represents a 39.3% extension in battery life. Our choice of
initial energy value was deliberately small, so that experi-
ments could be conducted in a reasonable amount of time.
The value of 12,000 J is only about 14% of the nominal en-
ergy in the IBM 560X battery. Extrapolating to full nominal
energy, our workload would have run for 2:18 hours at high-
est fidelity, and 3:13 hours at lowest fidelity.

5.2.2 Results
Figure 19 shows detailed results from two typical experi-
ments: one with a 20 minute goal, and the other with a 26
minute goal. The top graph shows how the supply of en-
ergy and Odyssey’s estimate of future demand change over
time. The graph confirms that estimated demand tracks sup-
ply closely for both experiments.

The four bottom graphs of Figure 19 show how the fi-
delity of each application varies during the two experiments.
For the 20 minute goal, the high priority Web and map ap-
plications remain at full fidelity throughout the experiment;
the video degrades slightly; and speech runs mostly at low
fidelity. For the 26 minute goal, the highest priority Web ap-
plication runs mostly at the highest fidelity, while the other
three applications run mostly at their lowest fidelities. For
both goals, applications are more stable at the beginning of
the experiment, and exhibit greater agility as energy drains.

Figure 20 summarizes the results of our experiments for
goals of 20, 22, 24, and 26 minutes. These results confirm
that Odyssey is doing a good job of energy adaptation. The
desired goal was met in every trial of each experiment. In all
cases, residual energy was very low, with the largest residue
being only 1.2% of the initial energy value. The average
number of adaptations by applications is generally low, but
there are some cases where it is high. This is an artifact of
the small initial energy value, since the system is designed
to exhibit greater agility when energy is scarce.

5.3 Sensitivity to half-life
Since the choice of a smoothing function was an important
factor in the prototype design, we examined the performance
of our prototype using several different values for the half-
life used in calculating !. In each experiment, we displayed
a half-hour video clip, and specified that the energy supply
should last for the entire video.

0 500 1000 1500

Elapsed Time (s)

0

5000

10000

15000

En
er

gy
 (J

ou
le

s)

Supply - 26 Minute Goal
Demand - 26 Minute Goal
Supply - 20 Minute Goal
Demand - 20 Minute Goal

0 500 1000 1500

Elapsed Time (s)

Max

Min

Sp
ee

ch
 F

id
el

ity

26 Minute Goal
20 Minute Goal

0 500 1000 1500

Elapsed Time (s)

Max

Min

Vi
de

o
Fi

de
lit

y

0 500 1000 1500

Elapsed Time (s)

Max

MinM
ap

 F
id

el
ity

0 500 1000 1500

Elapsed Time (s)

Max

MinW
eb

 F
id

el
ity

This figure shows how Odyssey meets user-specified goals
for battery durations of 20 and 26 minutes when running the
composite and video applications described in Section 3.7.
The top graph shows how the supply of energy and the esti-
mated demand change over time, while the other graphs show
the corresponding changes in application fidelity. The appli-
cations are prioritized with Speech having the lowest priority,
and Video, Map, and Web having successively higher priority.

Figure 19. Example of goal-directed adaptation

60

REAL-TIME

Real-Time Energy

deadline battery supply

execution budget power demand

• energy management is long-term, coarse

• deadlines can be set by the developer

• power demand is generally unknown

DISCUSSION

• Good to know, but is it practical?

• A user interface to set energy priorities?

• Savings with no utility impact are a no-brainer, but is the whole
adaptivity-concept fundamentally flawed?

• How did they measure their energy usage?

