
Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

Pin: building customized program
analysis tools with dynamic
instrumentation

C.-K. Luk & a bunch of other Intel guys

presented by Bjoern Doebel

Program analysis

Static
GCC, (SP)Lint, Coverity, …

– Compile-time
– Heavy-weight
– No environmental

information

Source-level
Lint, Coverity

– Exact information
– Problem: 3rd party tools

Dynamic
Valgrind, Pin, DynamoRIO, …

– Runtime
– Trade-off overhead vs.

realistic observations
– Path coverage issues

Binary analysis
Bitblaze/Vine, Valgrind, Pin, …

– Inexact w.r.t. source
code

– Support for any kind of
application / library

Dynamic binary analysis

• Approach:
– Disassemble binary (intermediate language)→
– Insert tool-specific instrumentation at IL level
– Recompile into machine code

• Usually JIT-based
– Disassemble & Resynthesize
– Copy & Annotate

• Main focus of research: runtime optimizations

Pin: architecture

Pin: JIT

• No intermediate language

• Trace-based recompilation

• Can attach to running program

Optimization 1: Trace linking

Optimization 2: Trace cloning

Optimization 3: Register Re-allocation

Optimization 3: Register Re-allocation

Optimization 3: Register Re-allocation

Performance evaluation

Discussion

• Is there any advantage from having no intermediate
language?
– In fact, the compiler has some kind of intermediate

representation, even if it is no language.

• Comparing Pin with Valgrind: How would it perform, if
Pin were required to provide
– Shadow values
– Address space management
– System call interception

Performance Comparison with Valgrind

• “[..] We implemented basic-block counting by modifying a
tool in the Valgrind package named lackey [..]” [1]

– “Lackey is a simple Valgrind tool that does various kinds
of basic program measurement. It adds quite a lot of
simple instrumentation to the program's code. It is
primarily intended to be of use as an example tool,
and consequently emphasises clarity of
implementation over performance.” [2]

[1] The paper
[2] http://valgrind.org/docs/manual/lk-manual.html

http://valgrind.org/docs/manual/lk-manual.html

	Introduction
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13

