ADDRESSING SHARED RESOURCE CONTENTION IN MULTICORE PROCESSORS VIA SCHEDULING

Sergey & Sergey Alexandra Fedorova

I 3% SPEED IMPROVEMENT FOR FREE. REALLY.

PERFORMANCE ON MULTICORES

- co-scheduled applications may contend for cache space
- ... and memory controllers, busses, prefetch units
- previous solutions focus on hardware or page coloring
- mitigate contention by using only scheduling
- performance improvement and isolation

classification scheme for threads

scheduling policy assigning cores

BASELINE: OPTIMAL ASSIGNMENT

Jiang's algorithm: measured co-run degradation + graph theory

	mcf	milc	gamess	namd
mcf	48.01%	65.63%	2.0%	2.11%
milc	24.75%	45.39%	1.23%	1.11%
gamess	2.67%	4.48%	-1.01%	-1.21%
namd	1.48%	3.45%	-1.19%	-0.93%

BASELINE: OPTIMAL ASSIGNMENT

Jiang's algorithm: measured co-run degradation + graph theory

Worst Schedule:

Best Schedule:

BASELINE: OPTIMAL ASSIGNMENT

Jiang's algorithm: measured co-run degradation + graph theory

EVALUATING A CLASSIFICATION

- I. Baseline: optimal schedule with measured degradation
- 2. Contestant: estimated best schedule using classification
- 3. Compare performance degradation of both runs

STACK DISTANCE PROFILE

CANDIDATE CLASSIFICATIONS

- Stack Distance Competition
- Animal Classes
- Miss Rate
- Pain

SURPRISE

high miss rate

poor cache reuse

indifferent to contention

SCHEDULING ALGORITHM

- I. Sort threads according to classifier.
- 2. Assign to cores using centralized sort.

- Distributed Intensity (DI): miss rate determined from stack distance profile
- Distributed Intensity Online (DIO): miss rate determined using performance counters

mnrovement Over DFFALIIT

% Deviation

SUMMARY

- cache space is **not** the single most important bottleneck
- cache miss rate is a good predictor for contention
- contention-aware thread-core assignment improves
 performance and reduces variability
- using **performance counters** yields a practical contention-aware scheduler