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PERFORMANCE ON
MULTICORES

» co-scheduled applications may contend for cache space

* ... and memory controllers, busses, prefetch units

* previous solutions focus on hardware or page coloring
* mitigate contention by using only scheduling

* performance improvement and isolation



classification scheduling

scheme for policy
threads assigning cores




BASELINE:
OPTIMAL ASSIGNMENT

Jiang’s algorithm: measured co-run degradation + graph theory

mct milc gamess  namd
mct 48.01% 65.63% 2.0% 2.11%
milc 24°15% 45.39%  1.23% 1.11%
gamess 2.67% 448%  -1.01% -1.21%
namd 1.48% 345%  -1.19% -0.93%
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Worst Schedule: Best Schedule:
Average Degradation = 22% Average Degradation = 2.3%
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EVALUATING A
CLASSIFICATION

|. Baseline: optimal schedule with measured degradation
2. Contestant: estimated best schedule using classification

3. Compare performance degradation of both runs
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CANDIDATE
CLASSIFICATIONS

- Stack Distance Competition
* Animal Classes

* Miss Rate

* Pain
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SURPRISE
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high miss rate POOr cache reuse .
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SCHEDULING ALGORITHM

|. Sort threads according to classifier.

2. Assign to cores using centralized sort.

» Distributed Intensity (DI):
miss rate determined from stack distance profile

» Distributed Intensity Online (DIO):
miss rate determined using performance counters
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SUMMARY

* cache space Is hot the single most important bottleneck
* cache miss rate is a good predictor for contention

» contention-aware thread-core assignment improves
performance and reduces variability

* using performance counters yiclds a practical
contention-aware scheduler



