ADDRESSING SHARED
RESOURCE CONTENTION
IN MULTICORE PROCESSORS
VIA SCHEDULING

Sergey & Sergey
Alexandra Fedorova

| 3% SPEED IMPROVEMENT
FOR FREE.
REALLY.

% Slow-Down realtive to solo

70

60

50

40

30

20

10

-
o

BES'

HWO

[I

RST

SOPLEX SPHINX GAMESS NAMD AVERAGE

Benchmark

PERFORMANCE ON
MULTICORES

» co-scheduled applications may contend for cache space

* ... and memory controllers, busses, prefetch units

* previous solutions focus on hardware or page coloring
* mitigate contention by using only scheduling

* performance improvement and isolation

classification scheduling

scheme for policy
threads assigning cores

BASELINE:
OPTIMAL ASSIGNMENT

Jiang’s algorithm: measured co-run degradation + graph theory

mct milc gamess namd
mct 48.01% 65.63% 2.0% 2.11%
milc 24°15% 45.39% 1.23% 1.11%
gamess 2.67% 448% -1.01% -1.21%
namd 1.48% 345% -1.19% -0.93%

BASELINE:
OPTIMAL ASSIGNMENT

Jiang’s algorithm: measured co-run degradation + graph theory

BASELINE:
OPTIMAL ASSIGNMENT

Jiang’s algorithm: measured co-run degradation + graph theory

Worst Schedule: Best Schedule:
Average Degradation = 22% Average Degradation = 2.3%

90.4% 4.67%

MCF MILC MCF GAMESS
-2.4% 4.56%

GAMESS NAMD MILC NAMD

EVALUATING A
CLASSIFICATION

|. Baseline: optimal schedule with measured degradation
2. Contestant: estimated best schedule using classification

3. Compare performance degradation of both runs

S TACK DISTANCE PROFILE

01010100

CANDIDATE
CLASSIFICATIONS

- Stack Distance Competition
* Animal Classes

* Miss Rate

* Pain

18

16 O4-Core, 2-LLC
14 0 6-Core, 3-LLC
12 l 8-Core, 4-LLC
10 l 10-Core, 5-LLC

% Degradation Above Optimal

o N B~ O ©®©

ﬂrir'r!(

PAIN MISS RATE ANIMAL RANDOM WORST

SURPRISE

. . indifferent to
high miss rate POOr cache reuse .
contention

Prefetch OL2 OFSB B DRAM Ctr.

100%
90%
80%
70%
60%
50%
40%
30%
20%

0,

A\

Contribution to total degradation

=)
N

soplex gcc lom mcf sphinx milc

SCHEDULING ALGORITHM

|. Sort threads according to classifier.

2. Assign to cores using centralized sort.

» Distributed Intensity (DI):
miss rate determined from stack distance profile

» Distributed Intensity Online (DIO):
miss rate determined using performance counters

Misses Per Million Instructions

60000

50000

40000

30000

20000

10000

H SOLO
B MAX

25

DI
20 DIO
Bl RANDOM
15 B WORST

% Degradation Above Optimal

il

WL#1 WL#2 WL#3 WL#4 WL#5 WL#6 WL#H#H/7 WLH8

% Improvement Over DEFAULT

H Dl
DIO

5 i

WL#1 WLH2 WLH3 WL#4 WLH#5 WLH6 WLH#7 WL#8

B DEFAULT

[DI
@ DIO

LLLL LLLL hdLL LLHL

nm ML I

L

o)
=
<
=z

10N

JTIN

NG

WLS

ANGOD

XNIHdS

JTIN

NG

WL7

SSIINVD

ANVN

J259

XNIHdS

WL6

d1d3d

AVdAOd

041

JTIN

WL5

ANVN

1349 ¢H

dd1iININO

10N

WL4

SS3INVD

AVdAOd

0411

=0]/A

WL3

ANGODS

SS3INVD

10N

X31d0S

WL2

ANVN

SS3INVO

XNIHdS

X31d0S

WL1

20 -

18 -

16 -

14 -

12 -

T T T T T 1
o o0 (Yo < N o
i

uoneinaqg %

SUMMARY

* cache space Is hot the single most important bottleneck
* cache miss rate is a good predictor for contention

» contention-aware thread-core assignment improves
performance and reduces variability

* using performance counters yiclds a practical
contention-aware scheduler

