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Abstract
Contention for shared resources on multicore processors remains

an unsolved problem in existing systems despite significant re-

search efforts dedicated to this problem in the past. Previous solu-

tions focused primarily on hardware techniques and software page

coloring to mitigate this problem. Our goal is to investigate how

and to what extent contention for shared resource can be mitigated

via thread scheduling. Scheduling is an attractive tool, because it

does not require extra hardware and is relatively easy to integrate

into the system. Our study is the first to provide a comprehensive

analysis of contention-mitigating techniques that use only schedul-

ing. The most difficult part of the problem is to find a classification

scheme for threads, which would determine how they affect each

other when competing for shared resources. We provide a com-

prehensive analysis of such classification schemes using a newly

proposed methodology that enables to evaluate these schemes sep-

arately from the scheduling algorithm itself and to compare them

to the optimal. As a result of this analysis we discovered a classifi-

cation scheme that addresses not only contention for cache space,

but contention for other shared resources, such as the memory con-

troller, memory bus and prefetching hardware. To show the applica-

bility of our analysis we design a new scheduling algorithm, which

we prototype at user level, and demonstrate that it performs within

2% of the optimal. We also conclude that the highest impact of

contention-aware scheduling techniques is not in improving perfor-

mance of a workload as a whole but in improving quality of service

or performance isolation for individual applications.

Categories and Subject Descriptors D.4.1 [Process Manage-
ment]: Scheduling

General Terms Performance, Measurement, Algorithms

Keywords Multicore processors, shared resource contention,

scheduling

1. Introduction
Multicore processors have become so prevalent in both desktops

and servers that they may be considered the norm for modern com-

puting systems. The limitations of techniques focused on extrac-

tion of instruction-level parallelism (ILP) and the constraints on
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Figure 1. The performance degradation relative to running solo for

two different schedules of SPEC CPU2006 applications on an Intel

Xeon X3565 quad-core processor (two cores share an LLC).

power budgets have greatly staggered the development of large sin-

gle cores and made multicore systems a very likely future of com-

puting, with hundreds to thousands of cores per chip. In operating

system scheduling algorithms used on multicore systems, the pri-

mary strategy for placing threads on cores is load balancing. The

OS scheduler tries to balance the runnable threads across the avail-

able resources to ensure fair distribution of CPU time and minimize

the idling of cores. There is a fundamental flaw with this strategy

which arises from the fact that a core is not an independent proces-

sor but rather a part of a larger on-chip system and hence shares

resources with other cores. It has been documented in previous

studies [6, 14, 15, 17, 22, 24] that the execution time of a thread

can vary greatly depending on which threads run on the other cores

of the same chip. This is especially true if several cores share the

same last-level cache (LLC).

Figure 1 highlights how the decisions made by the scheduler

can affect the performance of an application. This figure shows

the results of an experiment where four applications were running

simultaneously on a system with four cores and two shared caches.

There are three unique ways to distribute the four applications

across the four cores, with respect to the pairs of co-runners sharing

the cache; this gives us three unique schedules. We ran the threads

in each of these schedules, recorded the average completion time

for all applications in the workload, and labeled the schedule with

the lowest average completion time as the best and the one with the

highest average completion time as the worst. Figure 1 shows the

performance degradation that occurs due to sharing an LLC with

another application, relative to running solo (contention-free). The

best schedule delivers a 20% better average completion time than

the worst one. Performance of individual applications improves by

as much as 50%.
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PERFORMANCE ON 
MULTICORES

• co-scheduled applications may contend for cache space

• … and memory controllers, busses, prefetch units

• previous solutions focus on hardware or page coloring

• mitigate contention by using only scheduling

• performance improvement and isolation



classification 
scheme for 
threads

scheduling 
policy 

assigning cores



BASELINE:
OPTIMAL ASSIGNMENT

Jiang’s algorithm: measured co-run degradation + graph theory

2.1.1 A “perfect” scheduling policy
As a perfect scheduling policy, we use an algorithm proposed by
Jiang et al. [11]. This algorithm is guaranteed to find an optimal
scheduling assignment, i.e., the mapping of threads to cores, on
a machine with several clusters of cores sharing a cache as long
as the co-run degradations for applications are known. A co-run
degradation is an increase in the execution time of an application
when it shares a cache with a co-runner, relative to running solo.

Jiang’s methodology uses the co-run degradations to construct
a graph theoretic representation of the problem, where threads are
represented as nodes connected by edges, and the weights of the
edges are given by the sum of the mutual co-run degradations be-
tween the two threads. The optimal scheduling assignment can be
found by solving a min-weight perfect matching problem. For in-
stance, given the co-run degradations in Table 1, Figure 2 demon-
strates how Jiang’s method would be used to find the best and the
worst scheduling assignment. In Table 1, the value on the inter-
section of row i and column j indicates the performance degra-
dation that application i experiences when co-scheduled with ap-
plication j. In Figure 2, edge weights show the sum of mutual
co-run degradations of the corresponding nodes. For example, the
weight of 90.4% on the edge between MCF and MILC is the sum of
65.63% (the degradation of MCF when co-scheduled with MILC)
and 24.75% (the degradation of MILC co-scheduled with MCF).

Table 1. Co-run degradations of four obtained on a real system.
Small negative degradations for some benchmarks occur as a result
of sharing of certain libraries. The value on the intersection of
row i and column j indicates the performance degradation that
application i experiences when co-scheduled with application j.

mcf milc gamess namd
mcf 48.01% 65.63% 2.0% 2.11%
milc 24.75% 45.39% 1.23% 1.11%
gamess 2.67% 4.48% -1.01% -1.21%
namd 1.48% 3.45% -1.19% -0.93%

Although Jiang’s methodology and the corresponding algo-
rithms would be too expensive to use online (the complexity of
the algorithm is polynomial in the number of threads on systems
with two cores per shared cache and the problem is NP-complete
on systems where the degree of sharing is larger), it is acceptable
for offline evaluation of the quality of classification schemes.

Using Jiang’s algorithm as the perfect policy implies that the
classification schemes we are evaluating must be suitable for
estimating co-run degradations. All of our chosen classification
schemes answered this requirement: they can be used to estimate
co-run degradations in absolute or in relative terms.

2.1.2 An optimal classification scheme
To determine the quality of various classification schemes we not
only need to compare them with each other, but also to evaluate
how they measure up to the optimal classification scheme. All of
our evaluated classification schemes attempt to approximate rela-
tive performance degradation that arbitrary tuples of threads ex-
perience when sharing a cache relative to running solo. An opti-
mal classification scheme would therefore have the knowledge of
actual such degradation, as measured on a real system. To obtain
these measured degradations, we selected ten representative bench-
marks from the SPEC CPU2006 benchmark suite (the methodol-
ogy for selection is described later in this section), ran them solo
on our experimental system (described in detail in Section 5), ran
all possible pairs of these applications and recorded their perfor-
mance degradation relative to solo performance. In order to make
the analysis tractable it was performed based on pairwise degrada-
tions, assuming that only two threads may share a cache, but the
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Figure 2. An overview of using Jiang’s method for determining
the optimal and the worst thread schedule. Edges connecting nodes
are labeled with mutual co-run degradations, i.e., the sum of indi-
vidual degradations for a given pair. The average degradation for a
schedule is computed by summing up all mutual degradations and
dividing by the total number of applications (four in our case).

resultant scheduling algorithms are evaluated on systems with four
cores per shared cache as well.

2.1.3 Evaluating classification schemes
To evaluate a classification scheme on a particular set of applica-
tions, we follow these steps:

1. Find the optimal schedule using Jiang’s method and the optimal
classification scheme, i.e., relying on measured degradations.
Record its average performance degradation (see Figure 2).

2. Find the estimated best schedule using Jiang’s method and
the evaluated classification scheme, i.e., relying on estimated
degradations. Record its average performance degradation.

3. Compute the difference between the degradation of the optimal
schedule and of the estimated best schedule. The smaller the
difference, the better the evaluated classification scheme.

To perform a rigorous evaluation, we construct a large num-
ber of workloads consisting of four, eight and ten applications. We
evaluate all classification schemes using this method, and for each
classification scheme report the average degradation above the op-
timal scheme across all workloads.

2.1.4 Benchmarks and workloads
We selected ten benchmarks from the SPEC2006 benchmark suite
to represent a wide range of cache access behaviors. The cache
miss rates and access rates for every application in the SPEC2006
benchmark suite were obtained from a third party characterization
report [10] and a clustering technique was employed to select the
ten representative applications.

From these ten applications we constructed workloads for a
four-core, six-core, eight-core, and ten-core processor with two
cores per LLC. With the ten benchmarks we selected, there are
210 unique four-application workloads, 210 unique six-application
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EVALUATING A 
CLASSIFICATION

1. Baseline: optimal schedule with measured degradation

2. Contestant: estimated best schedule using classification

3. Compare performance degradation of both runs
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CANDIDATE 
CLASSIFICATIONS

• Stack Distance Competition

• Animal Classes

• Miss Rate

• Pain



The information for classification of applications, as described
by Xie et al. [26], is obtained from stack-distance profiles.

2.2.3 Miss Rate
Our findings about “sensitive” devils caused us to consider the
miss rate as the heuristic for contention. Although another group
of researchers previously proposed a contention-aware scheduling
algorithm based on miss rates [12], the hypothesis that the miss rate
should explain contention contradicted the models based on stack-
distance profiles, which emphasized cache reuse patterns, and thus
it needed a thorough validation.

We hypothesized that identifying applications with high miss
rates is very beneficial for the scheduler, because these applications
exacerbate the performance degradation due to memory controller
contention, memory bus contention, and prefetching hardware con-
tention. To attempt an approximation of the “best” schedule using
the miss rate heuristic, the scheduler will identify high miss rate
applications and separate them into different caches, such that no
one cache will have a much higher total miss rate than any other
cache. Since no cache will experience a significantly higher miss
rate than any other cache the performance degradation factors will
be stressed evenly throughout the system.

In addition to evaluating a metric based on miss rates, we also
experimented with other metrics, which can be obtained online
using hardware counters, such as cache access rate and IPC. Miss
rate, however, turned out to perform the best among them.

2.2.4 Pain
The Pain Classification Scheme is based on two new concepts that
we introduce in this work: cache sensitivity and cache intensity.
Sensitivity is a measure of how much an application will suffer
when cache space is taken away from it due to contention. Inten-
sity is a measure of how much an application will hurt others by
taking away their space in a shared cache. By combining the sen-
sitivity and intensity of two applications, we estimate the “pain” of
the given co-schedule. Combining a sensitive application with an
intensive co-runner should result in a high level of pain, and com-
bining an insensitive application with any type of co-runner should
result in a low level of pain. We obtain sensitivity and intensity
from stack distance profiles and we then combine them to measure
the resulting pain.

To calculate sensitivity S, we examine the number of cache hits
that will most likely turn into misses when the cache is shared. To
that end, we assign to the positions in the stack-distance profile
loss probabilities describing the likelihood that the hits will be
lost from each position. Intuitively hits to the Most Recently Used
(MRU) position are less likely to become misses than hits to the
LRU position when the cache is shared. Entries that are accessed
less frequently are more likely to be evicted as the other thread
brings its data into the cache; thus we scale the number of hits
in each position by the corresponding probability and add them
up to obtain the likely extra misses. The resulting measure is the
sensitivity value which is shown in equation (Eq. 1). Here h(i) is
the number of hits to the i-th position in the stack, where i = 1 is
the MRU and i = n is the LRU for an n-way set associative cache.
We use a linear loss probability distribution. As such the probability
of a hit in the i-th position becoming a miss is i

n+1 .

S = (
1

1 + n
)

nX

i=0

i ∗ h(i) (1)

Intensity Z is a measure of how aggressively an application uses
cache. As such, it approximates how much space the application
will take away from its co-runner(s). Our approach to measuring
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Figure 3. Degradation relative to optimal experienced by each
classification scheme on systems with different numbers of cores.

intensity is to use the number of last-level cache accesses per one
million instructions.

We combine sensitivity S and intensity Z into the Pain met-
ric, which is then used to approximate the co-run degradations re-
quired by our evaluation methodology. Suppose we have applica-
tions A and B sharing the same cache. Then the Pain of A due
to B approximates the relative performance degradation that A is
expected to experience due to B and is calculated as the intensity
of B multiplied by the sensitivity of A (Eq. 2). The degradation of
co-scheduling A and B together is the sum of the Pain of A due to
B and the Pain of B due to A (Eq. 3).

Pain(AB) = S(A) ∗ Z(B) (2)

Pain(A, B) = Pain(AB) + Pain(BA) (3)

2.2.5 Classification Schemes Evaluation
For the purposes of this work we collected stack distances profiles
offline using Intel’s binary instrumentation tool Pin [10], an add-
on module to Pin MICA [19], and our own module extending the
functionality of MICA. The stack distance profiles were converted
into the four classification schemes described above: SDC, Pain,
Miss rates, and Animal. We estimate the extra degradation above
the optimal schedule that each classification scheme produces for
the four-core, six-core, eight-core and ten-core systems. Addition-
ally, we present the degradations for the worst and random sched-
ules. A random schedule picks each of the possible assignment for
a workload with equal probability.

Figure 3 shows the results of the evaluation. Lower numbers are
better. The Pain, Miss Rate and Animal schemes performed rela-
tively well, but SDC surprisingly did only slightly better than ran-
dom. Pain performed the best, delivering only 1% worse perfor-
mance than the optimal classification scheme for all the systems.
Interestingly we see that all classification schemes except Pain and
Animal do worse as the number of cores in the system grows. In
systems with more cores the number of possible schedules grows,
and so imperfect classification schemes are less able to make a
lucky choice.

The Animal scheme did worse than Pain. Animal classes are
a rather rough estimation of relative co-run degradations (a lot of
programs will fall to the same class), and so the Animal scheme
simply cannot achieve the same precision as Pain which takes into
account absolute values. The Miss Rate scheme performs almost
as well as Pain and Animal scheme and yet is by far the easiest to
compute either online or offline.
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There are several complications with this approach, which make

it a rough estimate as opposed to an accurate measure of DRAM

controller contention. First, when the LLC is shared by two appli-

cations, extra evictions from cache cause the total number of misses

to go up. These extra misses contribute to the DRAM controller

contention. In our experimental technique the two applications are

in different LLCs and hence there are no extra misses. As a result,

we are underestimating the DRAM controller contention. Second,

we chose to disable prefetching for this experiment. If we enabled

prefetching and put two applications into different LLC then they

would each have access to a complete set of prefetching hardware.

This would have greatly increased the total number of requests is-

sued to the memory system from the prefetching hardware as com-

pared to the number of requests that can be issued from only one

LLC. By disabling the prefetching we are once again underestimat-

ing the DRAM controller contention. As such the values that we

measure should be considered a lower bound on DRAM controller

contention.

Estimating Performance Degradation due to FSB Contention
Next, we estimate the degree of performance degradation due to

contention for the FSB. To that end, we run the application and the

interfering benchmark on the same socket, but on different LLCs.

This is done with prefetching disabled, so as not to increase the bus

traffic. Equation 5 shows how we estimate the degradation due to

FSB contention.

FSB Contention =

DiffCache PF OFF −DiffSocket PF OFF

Solo PF OFF

(5)

Estimating Performance Degradation due to Cache Con-
tention To estimate the performance degradation due to cache

contention we take the execution time when an application is run

with an interfering co-runner in the same LLC and subtract from

it the execution time of the application running with the interfer-

ing benchmark in a different LLC of the same socket. This is done

with prefetching disabled so as not to increase bus traffic or contend

for prefetching hardware. The difference in the execution times be-

tween the two runs can be attributed to the extra misses that resulted

due to cache contention. Equation 6 demonstrates how we estimate

performance degradation due to cache contention.

Cache Contention =

SameCache PF OFF −DiffCache PF OFF

Solo PF OFF

(6)

Estimating Performance Degradation due to Contention for
Resources Involved in Prefetching Contention for resources in-

volved in prefetching has received less attention in literature than

contention for other resources. We were compelled to investigate

this type of contention when we observed that some applications

experienced a decreased prefetching rate (up to 30%) when shar-

ing an LLC with a memory-intensive co-runner. Broadly speaking,

prefetching resources include all the hardware that might contribute

to the speed and quality of prefetching. For example, our exper-

imental processor has two types of hardware that prefetches into

the L2 cache. The first is the Data Prefetching Logic (DPL) which

is activated when an application has two consecutive misses in the

LLC and a stride pattern is detected. In this case, the rest of the

addresses up to the page boundary are prefetched. The second is

the adjacent cache line prefetcher, or the streaming prefetcher. The

L2 prefetching hardware is dynamically shared by the two cores

using the LLC. The memory controller and the FSB are also in-

volved in prefetching, since they determine how aggressively these

requests can be issued to memory. It is difficult to tease apart the

latencies attributable to contention for each resource, so our esti-
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Figure 4. Percent contribution that each of the factors have on the

total degradation.

mation of contention for prefetching resources includes contention

for prefetching hardware as well as additional contention for these

two other resources. This is an upper bound on the contention for

the prefetching hardware itself.

We can measure the performance degradation due to prefetching-

related resources as the difference between the total degradation

and the degradation caused by cache contention, FSB, and DRAM

controller contention. Equation 7 calculates the total degradation

of an application when the LLC is shared by looking at the dif-

ference when the interfering benchmark shares the LLC and when

the application runs alone. Equation 8 shows the calculation of the

prefetching degradation.

Total Degradation =

SameCache PF ON − Solo PF ON

Solo PF ON

(7)

Prefetching Contention =

Eq.(7)− Eq.(6)− Eq.(5)− Eq.(4)
(8)

Finally, we calculate the degradation contribution of each factor

as the ratio of its degradation compared to the total degradation.

Figure 4 shows the percent contribution of each factor (DRAM

controller contention, FSB contention, L2 cache contention, and

prefetching resource contention) to the total degradation for six

SPEC2006 benchmarks.

The six applications shown in Figure 4 are the applications that

experience a performance degradation of at least 45% chosen from

the ten representative benchmarks. We see from Figure 4 that for all

applications except SPHINX contention for resources other than
shared cache is the dominant factor in performance degradation,

accounting for more than 50% of the total degradation.

While cache contention does have an effect on performance

degradation, any strategy that caters to reducing cache contention

exclusively cannot and will not have a major impact on perfor-

mance. The fact that contention for resources other than cache is

dominant, explains why the miss rate turns out to be such a good

heuristic for predicting contention. The miss rate highly correlates

with the amount of DRAM controller, FSB, and prefetch requests,

and thus is indicative of both the sensitivity of an application as

well as its intensity.

4. Scheduling Algorithms
A scheduling algorithm is the combination of a classification

scheme and a scheduling policy. We considered and evaluated sev-

eral scheduling algorithms that combined different classification

schemes and policies, and in this section we present those that
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SCHEDULING ALGORITHM

1. Sort threads according to classifier.

2. Assign to cores using centralized sort.

• Distributed Intensity (DI):
miss rate determined from stack distance profile

• Distributed Intensity Online (DIO):
miss rate determined using performance counters
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(a) The makeup of workloads
which deliver speedups from
25%-15%.
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(b) The makeup of workloads
which deliver speedups from
15%-10%.
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(c) The makeup of workloads
which deliver speedups from
10%-5%.
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which deliver speedups from 5%-
0%.

Figure 5. The makeup of workloads
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Figure 6. The solo and maximum miss rate recorded for each of
the 10 SPEC2006 benchmarks.

billion cycles and we use a running average for scheduling deci-
sions.

The DIO scheduler, like DI, manages the assignment of threads
to cores using affinity interfaces provided in Linux. As such, it mir-
rors the actions that would be performed by a kernel scheduler. The
key difference is that the kernel scheduler would directly manipu-
late the runqueues in order to place a thread on a particular core,
but a user-level prototype of the scheduler uses affinity-related sys-
tem calls for that purpose. For example, to swap thread A on core
i with thread B on core j we set affinity of A to j and affinity B
to i. Linux does the actual swapping. In the future, when DIO will
become part of the kernel swapping will be done by manipulating
the run-queues.

5. Evaluation on Real Systems

5.1 Evaluation Platform

We performed the experiments on two systems:
Dell-Poweredge-2950 (Intel Xeon X5365) has eight cores

placed on four chips. Each chip has a 4MB 16-way L2 cache shared
by its two cores. Each core also has private L1 instruction and data
caches. In our first series of experiments we used only two chips
out of four. This enabled us to verify our analytical results for the
4 thread workloads directly. After that, all eight cores with eight-
thread workloads were used.

Dell-Poweredge-R805 (AMD Opteron 2350 Barcelona) has
eight cores placed on two chips. Each chip has a 2MB 32-way L3
cache shared by its four cores. Each core also has a private unified
L2 cache and private L1 instruction and data caches. All eight cores
with eight thread workloads were used.

The experimental workloads were comprised of the 14 bench-
marks from SPEC CPU 2006 suite chosen using the clustering
technique as described in Section 2. See Table 2. For the eight-
core experiments we created eight-thread workloads by doubling
the corresponding four-thread workloads. For example, for the
four-thread workload (SOPLEX, SPHINX, GAMESS, NAMD)
the corresponding eight-thread workload is (SOPLEX, SPHINX,
GAMESS, NAMD, SOPLEX, SPHINX, GAMESS, NAMD). The
user-level scheduler starts the applications and binds them to cores
as directed by the scheduling algorithm.

Since we are focused on CPU-bound workloads, which are not
likely to run with more threads than cores [1, 25], we only evaluate
the scenarios where the number of threads does not exceed the
number of cores. If the opposite were the case, the scheduler would
simply re-evaluate the mapping of threads to cores every time the
set of running threads changes. The decision of which thread is
selected to run would be made in the same way as it is done by the
default scheduler. While in this case there are also opportunities to
separate competing threads in time as opposed to in space, we do
not investigate these strategies in this work.

Both systems were running Linux Gentoo 2.6.27 release 8. We
compare performance under DI and DIO to the default contention-
unaware scheduler in Linux, referring to the latter as DEFAULT.
The prefetching hardware is fully enabled during these experi-
ments. To account for the varied execution times of benchmark we
restart an application as soon as it terminates (to ensure that the
same workload is running at all times). An experiment terminates
when the longest application executed three times.

Workloads

2 memory-bound 2 CPU-bound

1 SOPLEX SPHINX GAMESS NAMD
2 SOPLEX MCF GAMESS GOBMK
3 MCF LIBQUANTUM POVRAY GAMESS
4 MCF OMNETPP H264 NAMD
5 MILC LIBQUANTUM POVRAY PERL

1 memory-bound 3 CPU-bound

6 SPHINX GCC NAMD GAMESS
3 memory-bound 1 CPU-bound

7 LBM MILC SPHINX GOBMK
8 LBM MILC MCF NAMD

Table 2. The workloads used for experiments.

5.2 Results

Intel Xeon 4 cores We begin with the results for the four-thread
workloads on the four-core configuration of the Intel Xeon ma-
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chine. For every workload we first run the three possible unique
schedules and measure the aggregate workload completion time of
each. We then determine the schedule with the optimal (minimal)
completion time, the worst possible schedule (maximum comple-
tion time) and the expected completion time of the random schedul-
ing algorithm (it selects all schedules with equal probability). We
then compared the aggregate execution times of DI and DIO with
the completion times of OPTIMAL, WORST and RANDOM. We
do not present results for the default Linux scheduler because when
the scheduler is given a processor affinity mask to use only four
cores out of eight, the migrations of threads across cores become
more frequent than when no mask is used, leading to results with
an atypically high variance. Figure 7 shows the performance degra-
dation above the optimal for every workload with DI, DIO, RAN-
DOM and WORST. The results show that DI and DIO perform
better than RANDOM and are within 2% of OPTIMAL.
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Figure 7. Aggregate performance degradation of each workload
with DI, DIO, RANDOM and WORST relative to OPTIMAL (low
bars are good) for the Intel machine and 4 threads.

Intel Xeon 8 cores Since this setup does not require a proces-
sor affinity mask, we evaluated the results of DI and DIO against
DEFAULT as in this case DEFAULT does not experience exces-
sive migrations. Figure 8 shows the percent aggregate workload
speedup over DEFAULT.
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Figure 8. Aggregate performance improvement of each workload
with DI and DIO relative to DEFAULT (high bars are good) for
Intel 8 threads.

We note that although generally DI and DIO improve aggre-
gate performance over DEFAULT, in a few cases they performed
slightly worse. However, the biggest advantage of DI and DIO is
that they offer much more stable results from run to run and avoid
the worst-case thread assignment. This effect is especially signif-
icant if we look at performance of individual applications. Fig-

ure 10(a) shows relative performance improvement for individual
applications of the worst-case assignments of DI and DIO over the
worst case assignments under DEFAULT. The results show that
DEFAULT consistently stumbles on much worse solutions than
DIO or DIO and as such there are cases when the performance
of individual applications is unpredictably bad under DEFAULT.
What this means is that if an application were repeatedly executed
on a multicore system, running it under DEFAULT vs., for instance,
DIO may occasionally cause its performance to degrade by as much
as 100% in some cases! Figure 10(b) shows the deviation of the
execution time of consecutive runs of the same application in the
same workload with DI, DIO and DEFAULT. We note that DE-
FAULT has a much higher deviation from run to run than DI and
DIO. DIO has a slightly higher deviation than DI as it is sensitive
to phase changes of applications and as a result tends to migrate
applications more frequently.

AMD Opteron 8 cores Finally, we report the results for the
same eight-thread workloads on the AMD system. The results
for the percent aggregate workload speedup over DEFAULT (Fig-
ure 9), relative performance improvement of the worst case assign-
ments over DEFAULT (Figure 10(c)) and the deviation of the exe-
cution times (Figure 10(d)) generally repeat the patterns observed
on the Intel Xeon machine with eight threads.
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Figure 9. Aggregate performance improvement of each workload
with DI and DIO relative to DEFAULT (high bars are good) for
AMD 8 threads.

5.3 Discussion

We draw several conclusions from our results. First of all, the clas-
sification scheme based on miss rates effectively enables to re-
duce contention for shared resources using a purely scheduling
approach. Furthermore, an algorithm based on this classification
scheme can be effectively implemented online as demonstrated by
our DIO prototype. Using contention-aware scheduling can help
improve overall system efficiency by reducing completion time for
the entire workload as well as reduce worst-case performance for
individual applications. In the former case, DIO improves perfor-
mance by up to 13% relative to DEFAULT and in the isolated cases
where it does worse than DEFAULT, the impact on performance is
at most 4%, far smaller than the corresponding benefit. On aver-
age, if we examine performance across all the workloads we have
tried DEFAULT does rather well in terms of workload-wide per-
formance – in the worst case it does only 13% worse than DIO.
But if we consider the variance of completion times and the effect
on individual applications, the picture changes significantly. DE-
FAULT achieves a much higher variance and it is likely to stumble
into much worse worst-case performance for individual applica-
tions. This means that when the goal is to deliver QoS, achieve
performance isolation or simply prioritize individual applications,

138



chine. For every workload we first run the three possible unique
schedules and measure the aggregate workload completion time of
each. We then determine the schedule with the optimal (minimal)
completion time, the worst possible schedule (maximum comple-
tion time) and the expected completion time of the random schedul-
ing algorithm (it selects all schedules with equal probability). We
then compared the aggregate execution times of DI and DIO with
the completion times of OPTIMAL, WORST and RANDOM. We
do not present results for the default Linux scheduler because when
the scheduler is given a processor affinity mask to use only four
cores out of eight, the migrations of threads across cores become
more frequent than when no mask is used, leading to results with
an atypically high variance. Figure 7 shows the performance degra-
dation above the optimal for every workload with DI, DIO, RAN-
DOM and WORST. The results show that DI and DIO perform
better than RANDOM and are within 2% of OPTIMAL.

!

"

#!

#"

$!

$"

!
"#
$%
&'
('

)*
+,

"-
.+

/$
"0
1)
*2

'3 %&
%&'
()*%'+
,'(-.

!

"

#!

#"

$!

$"

,/01# ,/01$ ,/012 ,/013 ,/01" ,/014 ,/015 ,/016

!
"#
$%
&'
('

)*
+,

"-
.+

/$
"0
1)
*2

'3 %&
%&'
()*%'+
,'(-.

Figure 7. Aggregate performance degradation of each workload
with DI, DIO, RANDOM and WORST relative to OPTIMAL (low
bars are good) for the Intel machine and 4 threads.

Intel Xeon 8 cores Since this setup does not require a proces-
sor affinity mask, we evaluated the results of DI and DIO against
DEFAULT as in this case DEFAULT does not experience exces-
sive migrations. Figure 8 shows the percent aggregate workload
speedup over DEFAULT.
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Figure 8. Aggregate performance improvement of each workload
with DI and DIO relative to DEFAULT (high bars are good) for
Intel 8 threads.

We note that although generally DI and DIO improve aggre-
gate performance over DEFAULT, in a few cases they performed
slightly worse. However, the biggest advantage of DI and DIO is
that they offer much more stable results from run to run and avoid
the worst-case thread assignment. This effect is especially signif-
icant if we look at performance of individual applications. Fig-

ure 10(a) shows relative performance improvement for individual
applications of the worst-case assignments of DI and DIO over the
worst case assignments under DEFAULT. The results show that
DEFAULT consistently stumbles on much worse solutions than
DIO or DIO and as such there are cases when the performance
of individual applications is unpredictably bad under DEFAULT.
What this means is that if an application were repeatedly executed
on a multicore system, running it under DEFAULT vs., for instance,
DIO may occasionally cause its performance to degrade by as much
as 100% in some cases! Figure 10(b) shows the deviation of the
execution time of consecutive runs of the same application in the
same workload with DI, DIO and DEFAULT. We note that DE-
FAULT has a much higher deviation from run to run than DI and
DIO. DIO has a slightly higher deviation than DI as it is sensitive
to phase changes of applications and as a result tends to migrate
applications more frequently.

AMD Opteron 8 cores Finally, we report the results for the
same eight-thread workloads on the AMD system. The results
for the percent aggregate workload speedup over DEFAULT (Fig-
ure 9), relative performance improvement of the worst case assign-
ments over DEFAULT (Figure 10(c)) and the deviation of the exe-
cution times (Figure 10(d)) generally repeat the patterns observed
on the Intel Xeon machine with eight threads.
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Figure 9. Aggregate performance improvement of each workload
with DI and DIO relative to DEFAULT (high bars are good) for
AMD 8 threads.

5.3 Discussion

We draw several conclusions from our results. First of all, the clas-
sification scheme based on miss rates effectively enables to re-
duce contention for shared resources using a purely scheduling
approach. Furthermore, an algorithm based on this classification
scheme can be effectively implemented online as demonstrated by
our DIO prototype. Using contention-aware scheduling can help
improve overall system efficiency by reducing completion time for
the entire workload as well as reduce worst-case performance for
individual applications. In the former case, DIO improves perfor-
mance by up to 13% relative to DEFAULT and in the isolated cases
where it does worse than DEFAULT, the impact on performance is
at most 4%, far smaller than the corresponding benefit. On aver-
age, if we examine performance across all the workloads we have
tried DEFAULT does rather well in terms of workload-wide per-
formance – in the worst case it does only 13% worse than DIO.
But if we consider the variance of completion times and the effect
on individual applications, the picture changes significantly. DE-
FAULT achieves a much higher variance and it is likely to stumble
into much worse worst-case performance for individual applica-
tions. This means that when the goal is to deliver QoS, achieve
performance isolation or simply prioritize individual applications,
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(a) The relative performance improvement of the worst case DI and DIO over the worst case DEFAULT for Intel 8 threads.
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(b) Deviation of the same application in the same workload with DI, DIO and Default (low bars are good) for Intel 8 threads.
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(c) The relative performance improvement of the worst case DI and DIO over the worst case DEFAULT for AMD 8 threads.
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(d) Deviation of the same application in the same workload with DI, DIO and Default (low bars are good) for AMD 8 threads.

Figure 10. The relative performance improvement and deviation

contention-aware scheduling can achieve much larger performance

impacts, speeding up individual applications by as much as a factor

of two.

To understand why DEFAULT performs relatively well on aver-

age let us discuss several examples. Consider a four core machine

where each pair of cores shares a cache. If the workload to be exe-

cuted on this machine involves two intensive applications and two
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SUMMARY

• cache space is not the single most important bottleneck

• cache miss rate is a good predictor for contention

• contention-aware thread-core assignment improves 
performance and reduces variability

• using performance counters yields a practical 
contention-aware scheduler


