
Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group

Effective data-race detection
for the kernel

J. Erickson, M. Musuvathi, S. Burckhard, K. Olynyk

presented by Bjoern Doebel

Data races

• Common definition:
– n >= 2 threads access a memory location concurrently
– At least one access is a write.
– No explicit mechanism to prevent simultaneous access is

used.

• Happens a lot
– → many uncritical errors → benign data race

• Update of statistical values
• Spinlocks & Co. → ad-hoc synchronization
• only know with thorough understanding of the code

– Sync. primitives have multiple uses

• Reproducing a race is tricky.

Race-detection: Happens-before relations

• Obtain trace of
– Memory accesses
– Use of locking primitives
– [Netzer1991]: use of MPI messaging primitives

• Order executed instructions in happens-before relation:
– Sequentially executed instructions in one thread
– unlock()/lock() on a mutex implies inter-thread happens-before

• Memory accesses are flagged as races, if no happens-before
relation can be established

• [Lamport 1978] [Netzer 1991,1993]

Race-detection: Happens-before relations

lock(mtx);

v := v + 1;

unlock(mtx);

lock(mtx);

v := v + 1;

unlock(mtx);

Thread 1 Thread 2

Race-detection: Happens-before relations

lock(mtx);

v := v + 1;

unlock(mtx);

x := x + 1;
lock(mtx);

v := v + 1;

unlock(mtx);

x := x + 1;

Thread 1 Thread 2

?

Happens-before going wrong...

x := x + 1;

lock(mtx);

v := v + 1;

unlock(mtx);

lock(mtx);

v := v + 1;

unlock(mtx);

x := x + 1;

Thread 1 Thread 2

Race detection: Lockset analysis

• Monitor locking primitives only

• Let LOCKS(t) be the set of locks held by thread t
• For each value V initialize C(V) to the set of all locks
• For each memory access to V by t:

• Dynamic [Savage 1997] and static [Engler 2003]
versions available

C V :=C V ∩LOCKS  t 

Error if C V =∅

Race detection: Classification

• Common race detectors use either HBR or LSA or a hybrid
approach

• Next step: tell apart benign from critical races

• Automation using record/replay analysis
– Record/replay makes reproduction trivial.
– Classification:

• Try out all possible schedules in replay
• Compare states after a certain point

– Binary-level [Naraynasamy 2007]
vs. language-level [Shen 2008]

– Add optimizations to determine which schedules are interesting
[Musuvathi 2008]

Race detection and the OS

• Threads may execute in different contexts no clean →
abstraction w.r.t. data races
– Racy accesses may be observed in the same thread

• Many more synchronization primitives, e.g.
– Spinlocks
– CLI/STI
– Semaphores

• Accesses to/from device memory
– External state changes modify memory content
– DMA

• Must not have unacceptable overhead

DataCollider

• Preprocessing: generate a set M of all memory accesses of a
program

• Periodically:
– Pick k random elements from M and set instruction breakpoints

• On instruction breakpoint:
– Perform conflict detection
– Randomly pick another element from M and set an IBP

• Post-processing
– Database of situations known to be benign races

Conflict detection

• Alternative A
– Set data breakpoint (r or rw) on memory location
– Delay execution
– If breakpoint hits: ERROR
– Issues

• Doesn't work for device memory
• Limited # of breakpoint registers
• Miss: virtual address mapped to same physical address
• False pos: same virtual address in different address spaces

• Alternative B
– Read value of location
– Delay execution
– Read value again
– On mismatch: ERROR

– Issue: Only one of the race participants is known

Discussion

• Still facing the major problem of dynamic analysis: only works on the
values actually observed.

• The real cool engineering is in the pruning database for benign races,
which they don't talk about at all.

• Main focus still is on code that is executed often.

• “But these techniques still suffer from the cost of sampling,
performed at every memory access. DataCollider avoids this problem
by using hardware breakpoint mechanisms.” That's not the whole →
story!

• Removing thread-local stack operations from check set may miss →
weird stuff such as DMA to stack?

• Fishy performance evaluation is fishy.

	Introduction
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12

