
SCHEDULING THREADS FOR
CONSTRUCTIVE CACHE

SHARING ON CMPS
Shimin Chen et al.

CMU & Intel Pittsburgh

CONSTRUCTIVE CACHE
SHARING

• mitigates the latency and bandwidth gap

• enables better use of on-chip real estate

• reduces power consumption

SCHEDULERS

Work Stealing (WS) Parallel Depth First (PDF)

greedy greedy

local work queues global work queue (?)

breadth first depth first

good affinity among jobs
executed by one core

good affinity among jobs
executed simultaneously

P4 P5 P6 P7 P8

Parallel Depth First:

Work Stealing:

L2 cache miss L2 cache hit Mixed Not yet executed

P1 P2 P3 P4

P1

P5 P6 P7 P8

P2 P3

Parallel Depth First:

Work Stealing:

L2 cache miss L2 cache hit Mixed

(a) Part way through (b) Completed

Figure 1: Scheduling parallel Mergesort using WS and PDF: Picturing the misses. Each horizontal box is a
sorted array of records, where at each level, pairs of arrays from the previous level are merged until all the
records are sorted. The L2 hits and misses are shown for sorting an array of CP bytes, where CP is the size
of the shared L2 cache, using 8 cores.

Philbin et al. [30] studied the possibility of reducing cache
misses for sequential programs through intelligent schedul-
ing of fine-grained threads. Their approach relies on memory
access hints in the program to identify threads that should
execute in close temporal proximity in order to promote
cache reuse. Although the scheduler is not directly appli-
cable to parallel scheduling, the approach may be a useful
pre-processing step for the PDF scheduler, which relies on
the program having a cache-friendly sequential schedule.

3. WORK STEALING AND PARALLEL
DEPTH FIRST SCHEDULERS

In this paper, we compare the performance of two greedy
schedulers proposed for fine-grained multithreaded programs:
Work Stealing (WS) and Parallel Depth First (PDF).

Threads and the dependences among them are often de-
scribed as a computation DAG. Each node in the DAG rep-
resents a task, which is a thread or portion of a thread that
has no internal dependences to/from other nodes. A weight
associated with each node represents the task’s runtime. We
refer to the longest (weighted) path in the DAG as the depth
D. A node or task is ready if all its ancestors in the DAG
have completed. The DAG unfolds as the computation pro-
ceeds, and the job of the scheduler is to assign nodes of the
DAG to processor cores over time so that no node is assigned
at a time before it is ready. In a greedy scheduler, a ready
task remains unscheduled only if all processors are already
busy executing other tasks.

Work Stealing (WS) is a popular greedy thread scheduling
algorithm for multithreaded programs, with proven theoret-
ical properties with regards to memory and cache usage [10,
8, 1]. The policy maintains a work queue for each processor
(actually a double-ended queue that allows elements to be
inserted on one end of the queue, the top, but taken from
either end). When forking a new thread, this new thread is
placed on the top of the local queue. When a task completes
on a processor, the processor looks for a ready-to-execute
task by first looking on the top of the local queue. If it finds
a task, it takes the task off the queue and runs it. If the
local queue is empty it checks the work queues of the other
processors and steals a task from the bottom of the first

non-empty queue it finds. WS is an attractive scheduling
policy because when there is plenty of parallelism, stealing
is quite rare and, because the tasks in a queue are related,
there is good affinity among the tasks executed by any one
processor. However, WS is not designed for constructive
cache sharing, because the processors tend to have disjoint
working sets.

Parallel Depth First (PDF) [6] is another greedy schedul-
ing policy, based on the following insight. Important (se-
quential) programs have already been highly tuned to get
good cache performance on a single core, by maintaining
small working sets, getting good spatial and temporal reuse,
etc. In PDF, when a core completes a task, it is assigned
the ready-to-execute task that the sequential program would
have executed the earliest.1 As a result, PDF tends to co-
schedule tasks in a way that tracks in some sense the se-
quential execution. Thus, for programs with good sequen-
tial cache performance, PDF provides good parallel cache
performance (i.e., constructive cache sharing), as evidenced
by the following theorem:

Theorem 3.1. [5] Let M1 be the number of misses when
executing an arbitrary computation DAG G sequentially with
an (ideal) cache of size C. Then a parallel execution of G
using PDF on P cores with a shared (ideal) cache of size at
least C + P · D incurs at most M1 misses, where D is the
depth of G.

This compares favorably to the comparable upper bound for
WS, where the cache size must be at least C ·P to guarantee
roughly M1 misses [8, 1]. However, these analytical guar-
antees leave unanswered a number of important research
questions. For example, what is the relative performance of
the two schedulers on real benchmarks? How does the size,
CP , of the on-chip cache effect the performance, particularly
when CP is larger than C + P ·D? In this paper, we address
these questions through experimental studies, where CP is
determined by technology factors, and increases roughly lin-
early with P in our default configurations.

An Example. Figure 1 depicts pictorially the L2 cache

1Note that [6, 7, 28] show how to do this on-line without
executing the sequential program.

MERGESORT

MERGESORT

P4 P5 P6 P7 P8

Parallel Depth First:

Work Stealing:

L2 cache miss L2 cache hit Mixed Not yet executed

P1 P2 P3 P4

P1

P5 P6 P7 P8

P2 P3

Parallel Depth First:

Work Stealing:

L2 cache miss L2 cache hit Mixed

(a) Part way through (b) Completed

Figure 1: Scheduling parallel Mergesort using WS and PDF: Picturing the misses. Each horizontal box is a
sorted array of records, where at each level, pairs of arrays from the previous level are merged until all the
records are sorted. The L2 hits and misses are shown for sorting an array of CP bytes, where CP is the size
of the shared L2 cache, using 8 cores.

Philbin et al. [30] studied the possibility of reducing cache
misses for sequential programs through intelligent schedul-
ing of fine-grained threads. Their approach relies on memory
access hints in the program to identify threads that should
execute in close temporal proximity in order to promote
cache reuse. Although the scheduler is not directly appli-
cable to parallel scheduling, the approach may be a useful
pre-processing step for the PDF scheduler, which relies on
the program having a cache-friendly sequential schedule.

3. WORK STEALING AND PARALLEL
DEPTH FIRST SCHEDULERS

In this paper, we compare the performance of two greedy
schedulers proposed for fine-grained multithreaded programs:
Work Stealing (WS) and Parallel Depth First (PDF).

Threads and the dependences among them are often de-
scribed as a computation DAG. Each node in the DAG rep-
resents a task, which is a thread or portion of a thread that
has no internal dependences to/from other nodes. A weight
associated with each node represents the task’s runtime. We
refer to the longest (weighted) path in the DAG as the depth
D. A node or task is ready if all its ancestors in the DAG
have completed. The DAG unfolds as the computation pro-
ceeds, and the job of the scheduler is to assign nodes of the
DAG to processor cores over time so that no node is assigned
at a time before it is ready. In a greedy scheduler, a ready
task remains unscheduled only if all processors are already
busy executing other tasks.

Work Stealing (WS) is a popular greedy thread scheduling
algorithm for multithreaded programs, with proven theoret-
ical properties with regards to memory and cache usage [10,
8, 1]. The policy maintains a work queue for each processor
(actually a double-ended queue that allows elements to be
inserted on one end of the queue, the top, but taken from
either end). When forking a new thread, this new thread is
placed on the top of the local queue. When a task completes
on a processor, the processor looks for a ready-to-execute
task by first looking on the top of the local queue. If it finds
a task, it takes the task off the queue and runs it. If the
local queue is empty it checks the work queues of the other
processors and steals a task from the bottom of the first

non-empty queue it finds. WS is an attractive scheduling
policy because when there is plenty of parallelism, stealing
is quite rare and, because the tasks in a queue are related,
there is good affinity among the tasks executed by any one
processor. However, WS is not designed for constructive
cache sharing, because the processors tend to have disjoint
working sets.

Parallel Depth First (PDF) [6] is another greedy schedul-
ing policy, based on the following insight. Important (se-
quential) programs have already been highly tuned to get
good cache performance on a single core, by maintaining
small working sets, getting good spatial and temporal reuse,
etc. In PDF, when a core completes a task, it is assigned
the ready-to-execute task that the sequential program would
have executed the earliest.1 As a result, PDF tends to co-
schedule tasks in a way that tracks in some sense the se-
quential execution. Thus, for programs with good sequen-
tial cache performance, PDF provides good parallel cache
performance (i.e., constructive cache sharing), as evidenced
by the following theorem:

Theorem 3.1. [5] Let M1 be the number of misses when
executing an arbitrary computation DAG G sequentially with
an (ideal) cache of size C. Then a parallel execution of G
using PDF on P cores with a shared (ideal) cache of size at
least C + P · D incurs at most M1 misses, where D is the
depth of G.

This compares favorably to the comparable upper bound for
WS, where the cache size must be at least C ·P to guarantee
roughly M1 misses [8, 1]. However, these analytical guar-
antees leave unanswered a number of important research
questions. For example, what is the relative performance of
the two schedulers on real benchmarks? How does the size,
CP , of the on-chip cache effect the performance, particularly
when CP is larger than C + P ·D? In this paper, we address
these questions through experimental studies, where CP is
determined by technology factors, and increases roughly lin-
early with P in our default configurations.

An Example. Figure 1 depicts pictorially the L2 cache

1Note that [6, 7, 28] show how to do this on-line without
executing the sequential program.

BENCHMARKS

1. LU: matrix decomposition, scientific

good cache reuse expected

2. Hash Join: database algorithm, large irregular data structure

memory-bound

3. Mergesort: recursive divide-and-conquer

depends on problem size and recursion strategy

CORE CONFIGURATIONS

Table 1: Parameters common to all configurations.
Processor core In-order scalar
Private L1 cache 64KB, 128-byte line, 4-way,

1-cycle hit latency
Shared L2 cache 128-byte line, configuration-dependent
Main Memory latency: 300; service rate: 30 (cycles)

Table 2: Default configurations.
Number of cores 1 2 4 8 16 32
Technology (nm) 90 90 90 65 45 32
L2 cache size (MB) 10 8 4 8 20 40
Associativity 20 16 16 16 20 20
L2 hit time (cycles) 15 13 11 13 19 23

Table 3: Single technology configurations with 45nm technology.
Number of cores 1 2 4 6 8 10 12 14 16 18 20 22 24 26
L2 cache size (MB) 48 44 40 36 32 32 28 24 20 16 12 9 5 1
Set associativity 24 22 20 18 16 16 28 24 20 16 24 18 20 16
L2 hit time (cycles) 25 25 23 23 21 21 21 19 19 17 15 15 13 7

hits and misses when using WS and PDF to schedule a paral-
lel Mergesort computation (which is detailed in Section 4.2).
Mergesorting an n byte (sub)array uses 2n bytes of memory,
because after completing a merge of two sub-arrays X and
Y of size n/2 into a sub-array of size n, the buffers holding
X and Y can be reused. In (a), we see a snapshot in which
WS is starting to encounter capacity misses because each
core, P1–P8, is working on a sub-array of size n = CP /8,
and hence their aggregate working set of 2 · CP does not fit
within the L2 cache. In contrast, PDF has P1–P8 perform-
ing a parallel merge into a sub-array of size CP /2, and hence
is incurring no capacity misses. In fact, the only misses thus
far are the cold misses in bringing in the first half of the
input array. From (b) we see that with P cores there are
log P levels in which PDF incurs no misses while WS incurs
all misses. This is a general phenomenon for the common
recursive divide-and-conquer paradigm where the problem
sizes decrease by (roughly) a factor of 2 at each level of the
recursion: PDF eliminates the misses in log P levels (only).

As apparent in Figure 1, for Mergesort using PDF, the
number of misses is Mpdf ≈ N

B
log(N/CP), where N is the

number of items being sorted and each cache line can hold
B items. A standard (recursive) sequential Mergesort in-
curs M1 = N

B
log(N/C) misses, where C is the size of the

cache. Note that because CP > C, we have that Mpdf < M1.
For Mergesort using WS, the number of misses is Mws ≈
N
B

log(NP/CP), which is an additive N
B

log P larger than
Mpdf . These results hold for any CP ≥ C + P · D, including
CP = P · C as well as the configurations in our study.

4. METHODOLOGY
In this section, we describe our experimental methodol-

ogy, focusing on the CMP design space to explore and the
benchmarks to use in our study.

4.1 CMP Design Space
We evaluate the performance of the WS and PDF sched-

ulers across a range of realistic (future) CMP configurations.
We assume area-constrained scaling and use a proportional
chip area allocation [20]. All area factors that we use are
based on the 2005 ITRS edition [32]. We consider, in par-
ticular, the 90nm, 65nm, 45nm, and 32nm technologies.2

Although to be concrete the configurations described be-
low are based on specific technologies, our results hold more
generally across a wide range of cache parameters.

We focus on CMP designs with private L1 caches and a

2By the end of 2006, major microprocessor manufacturers
have already been shipping or started shipping products
based on 65nm process technology. Intel has announced
plans to start 45nm production in the second half of 2007.

shared L2 cache. For our purposes, the most important con-
figuration parameters are (i) the number of processing cores
(P) and (ii) the size of L2 cache (CP). (We consider a private
L1 cache as a component in a core design and keep the L1
cache size per core fixed.) The die size is fixed at 240mm2.
75% of the total die area is allocated to the processing cores,
shared L2 cache, and the processor interconnect, leaving the
rest for other system-on-chip components. Of the core-cache
area, 15% is used by the processor interconnect and related
components, leaving approximately 65% of the total die area
(150mm2) for cores and caches. We model a single-threaded
in-order core. We compute its area requirement by using the
data of the IBM PowerPCRS64 ([12]), which is an in-order,
dual-threaded core, and by assuming a 5% area decrease for
removing the second hardware thread context [19]. Then
we use the logic area factors from ITRS to compute the core
area under various process technologies. Given a P , we can
determine the area occupied by all cores, and the remaining
area is allocated to the L2 cache.

Our L2 cache design assumes a rectangular cache layout in
which cache banks are connected through switches on a 2D-
mesh network, similar to S-NUCA-2 [23] but with a uniform
access delay. We calculate CP for each technology using
ITRS estimates of SRAM cell area factors and efficiency.
The cache access latency is the network round-trip latency
to access the furthest away bank, plus the bank access delay.

Cacti 3.2 [34] is used to determine optimized cache de-
signs and their latencies. Our optimized cache designs em-
ploy 1MB or 2MB cache banks. These bank sizes balance
network delay with bank access latency. Using realistic sig-
nal delay models [14], we calculate the bank-to-bank hop
latency to be 1 cycle for the cache sizes and technologies
considered. We optimize the overall bank access latency by
using Cacti recursively on each bank, where each recursion
step determines whether dividing this sub-bank even fur-
ther will result in lower access latency. Our optimized 1MB
cache bank design employs 4 x 256KB sub-banks with split
tag and data arrays, with an access latency of 7 cycles and
wave pipeline time of 3 cycles at 45 nm technology, while
our 2MB cache bank design employs 4 sub-banks each di-
vided into 4 x 128KB sub-banks with split tag and data
arrays, resulting in 9 cycles access latency and 2 cycles wave
pipeline time for the same technology. We assume conserva-
tively that those latencies are the same for the 90nm, 65nm
and 32nm geometries.

Given the above methodology, we generate realistic con-
figurations in two different design spaces: scaling technology
and single technology. The non-varying configuration pa-
rameters of our experiments are summarized in Table 1.

Scaling technology. Under scaling technology, we assume

Table 1: Parameters common to all configurations.
Processor core In-order scalar
Private L1 cache 64KB, 128-byte line, 4-way,

1-cycle hit latency
Shared L2 cache 128-byte line, configuration-dependent
Main Memory latency: 300; service rate: 30 (cycles)

Table 2: Default configurations.
Number of cores 1 2 4 8 16 32
Technology (nm) 90 90 90 65 45 32
L2 cache size (MB) 10 8 4 8 20 40
Associativity 20 16 16 16 20 20
L2 hit time (cycles) 15 13 11 13 19 23

Table 3: Single technology configurations with 45nm technology.
Number of cores 1 2 4 6 8 10 12 14 16 18 20 22 24 26
L2 cache size (MB) 48 44 40 36 32 32 28 24 20 16 12 9 5 1
Set associativity 24 22 20 18 16 16 28 24 20 16 24 18 20 16
L2 hit time (cycles) 25 25 23 23 21 21 21 19 19 17 15 15 13 7

hits and misses when using WS and PDF to schedule a paral-
lel Mergesort computation (which is detailed in Section 4.2).
Mergesorting an n byte (sub)array uses 2n bytes of memory,
because after completing a merge of two sub-arrays X and
Y of size n/2 into a sub-array of size n, the buffers holding
X and Y can be reused. In (a), we see a snapshot in which
WS is starting to encounter capacity misses because each
core, P1–P8, is working on a sub-array of size n = CP /8,
and hence their aggregate working set of 2 · CP does not fit
within the L2 cache. In contrast, PDF has P1–P8 perform-
ing a parallel merge into a sub-array of size CP /2, and hence
is incurring no capacity misses. In fact, the only misses thus
far are the cold misses in bringing in the first half of the
input array. From (b) we see that with P cores there are
log P levels in which PDF incurs no misses while WS incurs
all misses. This is a general phenomenon for the common
recursive divide-and-conquer paradigm where the problem
sizes decrease by (roughly) a factor of 2 at each level of the
recursion: PDF eliminates the misses in log P levels (only).

As apparent in Figure 1, for Mergesort using PDF, the
number of misses is Mpdf ≈ N

B
log(N/CP), where N is the

number of items being sorted and each cache line can hold
B items. A standard (recursive) sequential Mergesort in-
curs M1 = N

B
log(N/C) misses, where C is the size of the

cache. Note that because CP > C, we have that Mpdf < M1.
For Mergesort using WS, the number of misses is Mws ≈
N
B

log(NP/CP), which is an additive N
B

log P larger than
Mpdf . These results hold for any CP ≥ C + P · D, including
CP = P · C as well as the configurations in our study.

4. METHODOLOGY
In this section, we describe our experimental methodol-

ogy, focusing on the CMP design space to explore and the
benchmarks to use in our study.

4.1 CMP Design Space
We evaluate the performance of the WS and PDF sched-

ulers across a range of realistic (future) CMP configurations.
We assume area-constrained scaling and use a proportional
chip area allocation [20]. All area factors that we use are
based on the 2005 ITRS edition [32]. We consider, in par-
ticular, the 90nm, 65nm, 45nm, and 32nm technologies.2

Although to be concrete the configurations described be-
low are based on specific technologies, our results hold more
generally across a wide range of cache parameters.

We focus on CMP designs with private L1 caches and a

2By the end of 2006, major microprocessor manufacturers
have already been shipping or started shipping products
based on 65nm process technology. Intel has announced
plans to start 45nm production in the second half of 2007.

shared L2 cache. For our purposes, the most important con-
figuration parameters are (i) the number of processing cores
(P) and (ii) the size of L2 cache (CP). (We consider a private
L1 cache as a component in a core design and keep the L1
cache size per core fixed.) The die size is fixed at 240mm2.
75% of the total die area is allocated to the processing cores,
shared L2 cache, and the processor interconnect, leaving the
rest for other system-on-chip components. Of the core-cache
area, 15% is used by the processor interconnect and related
components, leaving approximately 65% of the total die area
(150mm2) for cores and caches. We model a single-threaded
in-order core. We compute its area requirement by using the
data of the IBM PowerPCRS64 ([12]), which is an in-order,
dual-threaded core, and by assuming a 5% area decrease for
removing the second hardware thread context [19]. Then
we use the logic area factors from ITRS to compute the core
area under various process technologies. Given a P , we can
determine the area occupied by all cores, and the remaining
area is allocated to the L2 cache.

Our L2 cache design assumes a rectangular cache layout in
which cache banks are connected through switches on a 2D-
mesh network, similar to S-NUCA-2 [23] but with a uniform
access delay. We calculate CP for each technology using
ITRS estimates of SRAM cell area factors and efficiency.
The cache access latency is the network round-trip latency
to access the furthest away bank, plus the bank access delay.

Cacti 3.2 [34] is used to determine optimized cache de-
signs and their latencies. Our optimized cache designs em-
ploy 1MB or 2MB cache banks. These bank sizes balance
network delay with bank access latency. Using realistic sig-
nal delay models [14], we calculate the bank-to-bank hop
latency to be 1 cycle for the cache sizes and technologies
considered. We optimize the overall bank access latency by
using Cacti recursively on each bank, where each recursion
step determines whether dividing this sub-bank even fur-
ther will result in lower access latency. Our optimized 1MB
cache bank design employs 4 x 256KB sub-banks with split
tag and data arrays, with an access latency of 7 cycles and
wave pipeline time of 3 cycles at 45 nm technology, while
our 2MB cache bank design employs 4 sub-banks each di-
vided into 4 x 128KB sub-banks with split tag and data
arrays, resulting in 9 cycles access latency and 2 cycles wave
pipeline time for the same technology. We assume conserva-
tively that those latencies are the same for the 90nm, 65nm
and 32nm geometries.

Given the above methodology, we generate realistic con-
figurations in two different design spaces: scaling technology
and single technology. The non-varying configuration pa-
rameters of our experiments are summarized in Table 1.

Scaling technology. Under scaling technology, we assume

SPEEDUP

1 2 4 8 16
0

5

10

15

20

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16
0

0.05

0.1

0.15

0.2

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(a) LU (b) LU

1 2 4 8 16 32
0

5

10

15

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

2

4

6

8

10

12

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(c) Hash Join (d) Hash Join

1 2 4 8 16 32
0

5

10

15

20

25

30

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

0.5

1

1.5

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(e) Mergesort (f) Mergesort

Figure 2: Parallel Depth First vs. Work Stealing
with default CMP configurations.

all six default configurations. We can see that PDF achieves
significantly better performance than WS. For 2-32 cores,
PDF achieves a factor of 1.97-14.28 fold speedups over se-
quential execution, while WS obtains only a factor of 1.81-
10.19 fold speedups. These result in a factor of 1.09-1.50
fold relative speedups of PDF over WS. The good perfor-
mance of PDF comes from effective constructive cache shar-
ing to avoid off-chip cache misses. As shown in Figure 2(d),
PDF incurs 13.2%-38.5% fewer L2 misses per instruction
than WS. Interestingly, the performance increase by dou-
bling the number of cores is significantly smaller from 16
to 32 cores than in other cases. This is because Hash Join
is main memory bandwidth-bound for the 16-core and 32-
core configurations: it utilizes 89.5%-90.1% of the available
memory bandwidth with PDF and 92.2%-97.3% with WS.

Mergesort. Figures 2(e)-(f) show the performance results
of sorting 32 million integers using Mergesort, for the six de-
fault CMP configurations. For 2-32 cores, PDF achieves a
factor of 2.00-26.44 fold speedups over sequential execution,
while WS obtains a factor of 1.93-22.30 fold speedups. These
lead to a factor of 1.03-1.19 fold relative speedups with 2-32
cores of PDF over WS. Figure 2(f) depicts the L2 misses per
instruction ratios. Similar to Hash Join, PDF incurs 13.8%-

12 4 6 8 101214161820222426
0

1

2

3

4 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
3

3.5

4

4.5

5

5.5

6 x 108

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join: execution time (b) Hash Join: 10-26 cores

12 4 6 8 101214161820222426
0

0.5

1

1.5

2 x 1010

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
0.8

1

1.2

1.4

1.6

1.8

2 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(c) Mergesort: execution time (d) Mergesort: 10-26 cores

Figure 3: Parallel Depth First vs. Work Stealing
under a single technology (45nm).

40.6% fewer L2 misses per instruction than WS. Comparing
Figure 2(b), Figure 2(d), and Figure 2(f), we see that the
L2 misses per instruction ratio of Mergesort (around 0.1%)
is much lower than Hash Join (around 0.6%), but is still sig-
nificant enough compared to LU (around 0.01%) to make a
difference on performance. We can clearly see the trend that
the larger the ratio of L2 misses per instruction, the larger
impact constructive cache sharing may have, and therefore
the larger relative performance benefits of PDF over WS.
Moreover, unlike Hash Join, Mergesort experiences only up
to 71.0% memory utilization due to the lower misses per in-
struction ratios, and thus the absolute speedup continues to
increase dramatically from 16 to 32 cores.

Considering the performance results of the three bench-
marks, we conclude that PDF achieves significantly better
performance than WS for a group of important applications
that have non-trivially large working sets, as evidenced by
the L2 misses per instruction ratios. Because LU does not
differentiate between PDF and WS, we focus on Hash Join
and Mergesort in the rest of the experimental study.

5.2 Single Technology Analysis
Figure 3 shows the execution time of Hash Join and Merge-

sort using PDF and WS, for 1-26 cores under the 45nm pro-
cess technology. As shown previously in Table 3, the L2
cache size decreases from 48MB with 1 core to 1MB with 26
cores. We examine Figure 3 for two purposes: (i) comparing
the performance of PDF and WS; and (ii) understanding the
impact of PDF on the choices of CMP design points. For
the first purpose, as shown in Figure 3, we see that PDF
wins across all the CMP configurations, achieving over WS
a factor of 1.06-1.64 fold speedup for Hash Join and a factor
of 1.03-1.11 speedup for Mergesort.

For the second purpose, as shown in Figures 3(a) and (c),

1 2 4 8 16
0

5

10

15

20

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16
0

0.05

0.1

0.15

0.2

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(a) LU (b) LU

1 2 4 8 16 32
0

5

10

15

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

2

4

6

8

10

12

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(c) Hash Join (d) Hash Join

1 2 4 8 16 32
0

5

10

15

20

25

30

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

0.5

1

1.5

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(e) Mergesort (f) Mergesort

Figure 2: Parallel Depth First vs. Work Stealing
with default CMP configurations.

all six default configurations. We can see that PDF achieves
significantly better performance than WS. For 2-32 cores,
PDF achieves a factor of 1.97-14.28 fold speedups over se-
quential execution, while WS obtains only a factor of 1.81-
10.19 fold speedups. These result in a factor of 1.09-1.50
fold relative speedups of PDF over WS. The good perfor-
mance of PDF comes from effective constructive cache shar-
ing to avoid off-chip cache misses. As shown in Figure 2(d),
PDF incurs 13.2%-38.5% fewer L2 misses per instruction
than WS. Interestingly, the performance increase by dou-
bling the number of cores is significantly smaller from 16
to 32 cores than in other cases. This is because Hash Join
is main memory bandwidth-bound for the 16-core and 32-
core configurations: it utilizes 89.5%-90.1% of the available
memory bandwidth with PDF and 92.2%-97.3% with WS.

Mergesort. Figures 2(e)-(f) show the performance results
of sorting 32 million integers using Mergesort, for the six de-
fault CMP configurations. For 2-32 cores, PDF achieves a
factor of 2.00-26.44 fold speedups over sequential execution,
while WS obtains a factor of 1.93-22.30 fold speedups. These
lead to a factor of 1.03-1.19 fold relative speedups with 2-32
cores of PDF over WS. Figure 2(f) depicts the L2 misses per
instruction ratios. Similar to Hash Join, PDF incurs 13.8%-

12 4 6 8 101214161820222426
0

1

2

3

4 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
3

3.5

4

4.5

5

5.5

6 x 108

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join: execution time (b) Hash Join: 10-26 cores

12 4 6 8 101214161820222426
0

0.5

1

1.5

2 x 1010

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
0.8

1

1.2

1.4

1.6

1.8

2 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(c) Mergesort: execution time (d) Mergesort: 10-26 cores

Figure 3: Parallel Depth First vs. Work Stealing
under a single technology (45nm).

40.6% fewer L2 misses per instruction than WS. Comparing
Figure 2(b), Figure 2(d), and Figure 2(f), we see that the
L2 misses per instruction ratio of Mergesort (around 0.1%)
is much lower than Hash Join (around 0.6%), but is still sig-
nificant enough compared to LU (around 0.01%) to make a
difference on performance. We can clearly see the trend that
the larger the ratio of L2 misses per instruction, the larger
impact constructive cache sharing may have, and therefore
the larger relative performance benefits of PDF over WS.
Moreover, unlike Hash Join, Mergesort experiences only up
to 71.0% memory utilization due to the lower misses per in-
struction ratios, and thus the absolute speedup continues to
increase dramatically from 16 to 32 cores.

Considering the performance results of the three bench-
marks, we conclude that PDF achieves significantly better
performance than WS for a group of important applications
that have non-trivially large working sets, as evidenced by
the L2 misses per instruction ratios. Because LU does not
differentiate between PDF and WS, we focus on Hash Join
and Mergesort in the rest of the experimental study.

5.2 Single Technology Analysis
Figure 3 shows the execution time of Hash Join and Merge-

sort using PDF and WS, for 1-26 cores under the 45nm pro-
cess technology. As shown previously in Table 3, the L2
cache size decreases from 48MB with 1 core to 1MB with 26
cores. We examine Figure 3 for two purposes: (i) comparing
the performance of PDF and WS; and (ii) understanding the
impact of PDF on the choices of CMP design points. For
the first purpose, as shown in Figure 3, we see that PDF
wins across all the CMP configurations, achieving over WS
a factor of 1.06-1.64 fold speedup for Hash Join and a factor
of 1.03-1.11 speedup for Mergesort.

For the second purpose, as shown in Figures 3(a) and (c),

1 2 4 8 16
0

5

10

15

20

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16
0

0.05

0.1

0.15

0.2

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(a) LU (b) LU

1 2 4 8 16 32
0

5

10

15

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

2

4

6

8

10

12

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(c) Hash Join (d) Hash Join

1 2 4 8 16 32
0

5

10

15

20

25

30

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

0.5

1

1.5

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(e) Mergesort (f) Mergesort

Figure 2: Parallel Depth First vs. Work Stealing
with default CMP configurations.

all six default configurations. We can see that PDF achieves
significantly better performance than WS. For 2-32 cores,
PDF achieves a factor of 1.97-14.28 fold speedups over se-
quential execution, while WS obtains only a factor of 1.81-
10.19 fold speedups. These result in a factor of 1.09-1.50
fold relative speedups of PDF over WS. The good perfor-
mance of PDF comes from effective constructive cache shar-
ing to avoid off-chip cache misses. As shown in Figure 2(d),
PDF incurs 13.2%-38.5% fewer L2 misses per instruction
than WS. Interestingly, the performance increase by dou-
bling the number of cores is significantly smaller from 16
to 32 cores than in other cases. This is because Hash Join
is main memory bandwidth-bound for the 16-core and 32-
core configurations: it utilizes 89.5%-90.1% of the available
memory bandwidth with PDF and 92.2%-97.3% with WS.

Mergesort. Figures 2(e)-(f) show the performance results
of sorting 32 million integers using Mergesort, for the six de-
fault CMP configurations. For 2-32 cores, PDF achieves a
factor of 2.00-26.44 fold speedups over sequential execution,
while WS obtains a factor of 1.93-22.30 fold speedups. These
lead to a factor of 1.03-1.19 fold relative speedups with 2-32
cores of PDF over WS. Figure 2(f) depicts the L2 misses per
instruction ratios. Similar to Hash Join, PDF incurs 13.8%-

12 4 6 8 101214161820222426
0

1

2

3

4 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
3

3.5

4

4.5

5

5.5

6 x 108

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join: execution time (b) Hash Join: 10-26 cores

12 4 6 8 101214161820222426
0

0.5

1

1.5

2 x 1010

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
0.8

1

1.2

1.4

1.6

1.8

2 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(c) Mergesort: execution time (d) Mergesort: 10-26 cores

Figure 3: Parallel Depth First vs. Work Stealing
under a single technology (45nm).

40.6% fewer L2 misses per instruction than WS. Comparing
Figure 2(b), Figure 2(d), and Figure 2(f), we see that the
L2 misses per instruction ratio of Mergesort (around 0.1%)
is much lower than Hash Join (around 0.6%), but is still sig-
nificant enough compared to LU (around 0.01%) to make a
difference on performance. We can clearly see the trend that
the larger the ratio of L2 misses per instruction, the larger
impact constructive cache sharing may have, and therefore
the larger relative performance benefits of PDF over WS.
Moreover, unlike Hash Join, Mergesort experiences only up
to 71.0% memory utilization due to the lower misses per in-
struction ratios, and thus the absolute speedup continues to
increase dramatically from 16 to 32 cores.

Considering the performance results of the three bench-
marks, we conclude that PDF achieves significantly better
performance than WS for a group of important applications
that have non-trivially large working sets, as evidenced by
the L2 misses per instruction ratios. Because LU does not
differentiate between PDF and WS, we focus on Hash Join
and Mergesort in the rest of the experimental study.

5.2 Single Technology Analysis
Figure 3 shows the execution time of Hash Join and Merge-

sort using PDF and WS, for 1-26 cores under the 45nm pro-
cess technology. As shown previously in Table 3, the L2
cache size decreases from 48MB with 1 core to 1MB with 26
cores. We examine Figure 3 for two purposes: (i) comparing
the performance of PDF and WS; and (ii) understanding the
impact of PDF on the choices of CMP design points. For
the first purpose, as shown in Figure 3, we see that PDF
wins across all the CMP configurations, achieving over WS
a factor of 1.06-1.64 fold speedup for Hash Join and a factor
of 1.03-1.11 speedup for Mergesort.

For the second purpose, as shown in Figures 3(a) and (c),

SINGLE TECHNOLOGY
Table 1: Parameters common to all configurations.

Processor core In-order scalar
Private L1 cache 64KB, 128-byte line, 4-way,

1-cycle hit latency
Shared L2 cache 128-byte line, configuration-dependent
Main Memory latency: 300; service rate: 30 (cycles)

Table 2: Default configurations.
Number of cores 1 2 4 8 16 32
Technology (nm) 90 90 90 65 45 32
L2 cache size (MB) 10 8 4 8 20 40
Associativity 20 16 16 16 20 20
L2 hit time (cycles) 15 13 11 13 19 23

Table 3: Single technology configurations with 45nm technology.
Number of cores 1 2 4 6 8 10 12 14 16 18 20 22 24 26
L2 cache size (MB) 48 44 40 36 32 32 28 24 20 16 12 9 5 1
Set associativity 24 22 20 18 16 16 28 24 20 16 24 18 20 16
L2 hit time (cycles) 25 25 23 23 21 21 21 19 19 17 15 15 13 7

hits and misses when using WS and PDF to schedule a paral-
lel Mergesort computation (which is detailed in Section 4.2).
Mergesorting an n byte (sub)array uses 2n bytes of memory,
because after completing a merge of two sub-arrays X and
Y of size n/2 into a sub-array of size n, the buffers holding
X and Y can be reused. In (a), we see a snapshot in which
WS is starting to encounter capacity misses because each
core, P1–P8, is working on a sub-array of size n = CP /8,
and hence their aggregate working set of 2 · CP does not fit
within the L2 cache. In contrast, PDF has P1–P8 perform-
ing a parallel merge into a sub-array of size CP /2, and hence
is incurring no capacity misses. In fact, the only misses thus
far are the cold misses in bringing in the first half of the
input array. From (b) we see that with P cores there are
log P levels in which PDF incurs no misses while WS incurs
all misses. This is a general phenomenon for the common
recursive divide-and-conquer paradigm where the problem
sizes decrease by (roughly) a factor of 2 at each level of the
recursion: PDF eliminates the misses in log P levels (only).

As apparent in Figure 1, for Mergesort using PDF, the
number of misses is Mpdf ≈ N

B
log(N/CP), where N is the

number of items being sorted and each cache line can hold
B items. A standard (recursive) sequential Mergesort in-
curs M1 = N

B
log(N/C) misses, where C is the size of the

cache. Note that because CP > C, we have that Mpdf < M1.
For Mergesort using WS, the number of misses is Mws ≈
N
B

log(NP/CP), which is an additive N
B

log P larger than
Mpdf . These results hold for any CP ≥ C + P · D, including
CP = P · C as well as the configurations in our study.

4. METHODOLOGY
In this section, we describe our experimental methodol-

ogy, focusing on the CMP design space to explore and the
benchmarks to use in our study.

4.1 CMP Design Space
We evaluate the performance of the WS and PDF sched-

ulers across a range of realistic (future) CMP configurations.
We assume area-constrained scaling and use a proportional
chip area allocation [20]. All area factors that we use are
based on the 2005 ITRS edition [32]. We consider, in par-
ticular, the 90nm, 65nm, 45nm, and 32nm technologies.2

Although to be concrete the configurations described be-
low are based on specific technologies, our results hold more
generally across a wide range of cache parameters.

We focus on CMP designs with private L1 caches and a

2By the end of 2006, major microprocessor manufacturers
have already been shipping or started shipping products
based on 65nm process technology. Intel has announced
plans to start 45nm production in the second half of 2007.

shared L2 cache. For our purposes, the most important con-
figuration parameters are (i) the number of processing cores
(P) and (ii) the size of L2 cache (CP). (We consider a private
L1 cache as a component in a core design and keep the L1
cache size per core fixed.) The die size is fixed at 240mm2.
75% of the total die area is allocated to the processing cores,
shared L2 cache, and the processor interconnect, leaving the
rest for other system-on-chip components. Of the core-cache
area, 15% is used by the processor interconnect and related
components, leaving approximately 65% of the total die area
(150mm2) for cores and caches. We model a single-threaded
in-order core. We compute its area requirement by using the
data of the IBM PowerPCRS64 ([12]), which is an in-order,
dual-threaded core, and by assuming a 5% area decrease for
removing the second hardware thread context [19]. Then
we use the logic area factors from ITRS to compute the core
area under various process technologies. Given a P , we can
determine the area occupied by all cores, and the remaining
area is allocated to the L2 cache.

Our L2 cache design assumes a rectangular cache layout in
which cache banks are connected through switches on a 2D-
mesh network, similar to S-NUCA-2 [23] but with a uniform
access delay. We calculate CP for each technology using
ITRS estimates of SRAM cell area factors and efficiency.
The cache access latency is the network round-trip latency
to access the furthest away bank, plus the bank access delay.

Cacti 3.2 [34] is used to determine optimized cache de-
signs and their latencies. Our optimized cache designs em-
ploy 1MB or 2MB cache banks. These bank sizes balance
network delay with bank access latency. Using realistic sig-
nal delay models [14], we calculate the bank-to-bank hop
latency to be 1 cycle for the cache sizes and technologies
considered. We optimize the overall bank access latency by
using Cacti recursively on each bank, where each recursion
step determines whether dividing this sub-bank even fur-
ther will result in lower access latency. Our optimized 1MB
cache bank design employs 4 x 256KB sub-banks with split
tag and data arrays, with an access latency of 7 cycles and
wave pipeline time of 3 cycles at 45 nm technology, while
our 2MB cache bank design employs 4 sub-banks each di-
vided into 4 x 128KB sub-banks with split tag and data
arrays, resulting in 9 cycles access latency and 2 cycles wave
pipeline time for the same technology. We assume conserva-
tively that those latencies are the same for the 90nm, 65nm
and 32nm geometries.

Given the above methodology, we generate realistic con-
figurations in two different design spaces: scaling technology
and single technology. The non-varying configuration pa-
rameters of our experiments are summarized in Table 1.

Scaling technology. Under scaling technology, we assume

1 2 4 8 16
0

5

10

15

20

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16
0

0.05

0.1

0.15

0.2

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(a) LU (b) LU

1 2 4 8 16 32
0

5

10

15

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

2

4

6

8

10

12

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(c) Hash Join (d) Hash Join

1 2 4 8 16 32
0

5

10

15

20

25

30

number of cores (default configurations)

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

pdf
ws

1 2 4 8 16 32
0

0.5

1

1.5

number of cores (default configurations)

L2
 m

is
se

s
pe

r 1
00

0
in

st
ru

ct
io

ns

pdf
ws

(e) Mergesort (f) Mergesort

Figure 2: Parallel Depth First vs. Work Stealing
with default CMP configurations.

all six default configurations. We can see that PDF achieves
significantly better performance than WS. For 2-32 cores,
PDF achieves a factor of 1.97-14.28 fold speedups over se-
quential execution, while WS obtains only a factor of 1.81-
10.19 fold speedups. These result in a factor of 1.09-1.50
fold relative speedups of PDF over WS. The good perfor-
mance of PDF comes from effective constructive cache shar-
ing to avoid off-chip cache misses. As shown in Figure 2(d),
PDF incurs 13.2%-38.5% fewer L2 misses per instruction
than WS. Interestingly, the performance increase by dou-
bling the number of cores is significantly smaller from 16
to 32 cores than in other cases. This is because Hash Join
is main memory bandwidth-bound for the 16-core and 32-
core configurations: it utilizes 89.5%-90.1% of the available
memory bandwidth with PDF and 92.2%-97.3% with WS.

Mergesort. Figures 2(e)-(f) show the performance results
of sorting 32 million integers using Mergesort, for the six de-
fault CMP configurations. For 2-32 cores, PDF achieves a
factor of 2.00-26.44 fold speedups over sequential execution,
while WS obtains a factor of 1.93-22.30 fold speedups. These
lead to a factor of 1.03-1.19 fold relative speedups with 2-32
cores of PDF over WS. Figure 2(f) depicts the L2 misses per
instruction ratios. Similar to Hash Join, PDF incurs 13.8%-

12 4 6 8 101214161820222426
0

1

2

3

4 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
3

3.5

4

4.5

5

5.5

6 x 108

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join: execution time (b) Hash Join: 10-26 cores

12 4 6 8 101214161820222426
0

0.5

1

1.5

2 x 1010

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

10 12 14 16 18 20 22 24 26
0.8

1

1.2

1.4

1.6

1.8

2 x 109

number of cores (45nm technology)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(c) Mergesort: execution time (d) Mergesort: 10-26 cores

Figure 3: Parallel Depth First vs. Work Stealing
under a single technology (45nm).

40.6% fewer L2 misses per instruction than WS. Comparing
Figure 2(b), Figure 2(d), and Figure 2(f), we see that the
L2 misses per instruction ratio of Mergesort (around 0.1%)
is much lower than Hash Join (around 0.6%), but is still sig-
nificant enough compared to LU (around 0.01%) to make a
difference on performance. We can clearly see the trend that
the larger the ratio of L2 misses per instruction, the larger
impact constructive cache sharing may have, and therefore
the larger relative performance benefits of PDF over WS.
Moreover, unlike Hash Join, Mergesort experiences only up
to 71.0% memory utilization due to the lower misses per in-
struction ratios, and thus the absolute speedup continues to
increase dramatically from 16 to 32 cores.

Considering the performance results of the three bench-
marks, we conclude that PDF achieves significantly better
performance than WS for a group of important applications
that have non-trivially large working sets, as evidenced by
the L2 misses per instruction ratios. Because LU does not
differentiate between PDF and WS, we focus on Hash Join
and Mergesort in the rest of the experimental study.

5.2 Single Technology Analysis
Figure 3 shows the execution time of Hash Join and Merge-

sort using PDF and WS, for 1-26 cores under the 45nm pro-
cess technology. As shown previously in Table 3, the L2
cache size decreases from 48MB with 1 core to 1MB with 26
cores. We examine Figure 3 for two purposes: (i) comparing
the performance of PDF and WS; and (ii) understanding the
impact of PDF on the choices of CMP design points. For
the first purpose, as shown in Figure 3, we see that PDF
wins across all the CMP configurations, achieving over WS
a factor of 1.06-1.64 fold speedup for Hash Join and a factor
of 1.03-1.11 speedup for Mergesort.

For the second purpose, as shown in Figures 3(a) and (c),

CACHE HIT TIME SENSITIVITY

7 19
0

1

2

3

4

5

6

x 108

L2 cache hit time (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

7 19
0

5

10

15

x 108

L2 cache hit time (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join (b) Mergesort

Figure 4: Varying L2 cache hit time with the 16-
core default configuration.

100 300 500 700 900 1100
0

0.5

1

1.5

2 x 109

main memory latency (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

100 300 500 700 900 1100
0

0.5

1

1.5

2

2.5 x 109

main memory latency (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join (b) Mergesort

Figure 5: Varying main memory latency with the
16-core default configuration.

 8M 4M 2M 1M 512K 256K 128K 64K 32K
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

task working set size (bytes)

L2
 m

is
se

s
pe

r 1
00

0
in

st

pdf
ws

 8M 4M 2M 1M 512K 256K 128K 64K 32K
0

2

4

6

8

10 x 108

task working set size (bytes)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

 8M 4M 2M 1M 512K 256K 128K 64K 32K
0

5

10

15 x 108

task working set size (bytes)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

(a) L2 misses on 32 cores (b) Execution time on 32 cores (c) Execution time on 16 cores

Figure 6: Varying the task granularity of parallel Mergesort for default configurations.

we can see that the major trend of all the curves is to gen-
erally decrease as the number of cores increases, meaning
that application performance generally improves with more
cores. When there are 10 or more cores, the curves seem flat.
However, when we zoom into the 10-26 core performance in
Figures 3(b) and (d), we see that the curves actually vary.
The Hash Join curves reach the lowest points around 18
cores then go up, while the Mergesort curves continue to
decrease until 24 or 26 cores. With 18 or more cores, Hash
Join utilizes over 95% of the main memory bandwidth. In-
creasing the number of cores while decreasing the cache size
only makes the situation worse, leading to the worse perfor-
mance. In contrast, Mergesort is not bounded by memory
bandwidth and its performance improves with more cores.3

When making a design choice in the CMP design space,
a typical goal is to optimize the performance of a suite of
benchmark applications (e.g., SPEC) measured by aggre-
gate performance metrics. Compared to WS, PDF pro-
vides larger freedom in the choice of design points in order
to achieve a desired level of performance (e.g., more than
K times faster than a reference configuration) for a mul-
tithreaded application. For example, for Hash Join, 10-26
cores with PDF achieve similar or better performance than
the best WS performance. Similarly, 20-26 cores with PDF
achieve similar or better performance than the best WS per-
formance for Mergesort. Thus designers are able to make
better trade-offs balancing sequential vs. multithreaded, and
computation-intensive vs. memory-intensive programs.

3From 24 cores (5MB cache) to 26 cores (1MB cache),
Mergesort with PDF experiences a large jump (41% in-
crease) in its L2 misses per instruction ratio. This explains
the jump in its execution time in Figure 3(d).

5.3 CMP Parameter Sensitivity Analysis
Figure 4 and Figure 5 compare the performance of PDF

vs. WS varying the L2 cache hit time and varying the main
memory latency. The results are similar to our default con-
figurations. In particular, compared to WS, PDF achieves a
factor of 1.21-1.62 fold relative speedups for Hash Join and
1.03-1.29 fold relative speedups for Mergesort.

Interestingly, from Figure 4, we can compare the PDF bar
for a 19-cycle L2 hit time with the WS bar for a 7-cycle hit
time. This comparison reveals that PDF running on a CMP
architecture with a relatively slow monolithic shared cache
(19-cycle hit time) retains its advantage over WS even when
WS is run on a CMP architecture with a faster distributed
on-chip cache (7-cycle hit time to a core’s local bank). This
is because for Hash Join and Mergesort, in our experiments,
the number of L2 hits is on par with the number of L2
misses, so the L2 miss time dominates any differences in L2
hit times.

5.4 Impact of Thread Granularity
In the course of parallelizing the benchmark applications,

we found that task granularity had a large impact on cache
performance and execution times. As discussed in Section 4.2,
the original versions of the Hash Join and Mergesort pro-
grams both suffered from being too coarse-grained. The
original Hash Join code generates only one thread per cache-
sized sub-partition. The original Mergesort code employs a
serial merging procedure. By parallelizing the probe proce-
dure within the processing of a sub-partition in Hash Join
and by parallelizing the merging procedure for Mergesort,
we removed serial bottlenecks and improved constructive

IMPACT OF THREAD
GRANULARITY

7 19
0

1

2

3

4

5

6

x 108

L2 cache hit time (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

7 19
0

5

10

15

x 108

L2 cache hit time (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join (b) Mergesort

Figure 4: Varying L2 cache hit time with the 16-
core default configuration.

100 300 500 700 900 1100
0

0.5

1

1.5

2 x 109

main memory latency (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

100 300 500 700 900 1100
0

0.5

1

1.5

2

2.5 x 109

main memory latency (cycles)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

(a) Hash Join (b) Mergesort

Figure 5: Varying main memory latency with the
16-core default configuration.

 8M 4M 2M 1M 512K 256K 128K 64K 32K
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

task working set size (bytes)

L2
 m

is
se

s
pe

r 1
00

0
in

st

pdf
ws

 8M 4M 2M 1M 512K 256K 128K 64K 32K
0

2

4

6

8

10 x 108

task working set size (bytes)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

pdf
ws

 8M 4M 2M 1M 512K 256K 128K 64K 32K
0

5

10

15 x 108

task working set size (bytes)

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

(a) L2 misses on 32 cores (b) Execution time on 32 cores (c) Execution time on 16 cores

Figure 6: Varying the task granularity of parallel Mergesort for default configurations.

we can see that the major trend of all the curves is to gen-
erally decrease as the number of cores increases, meaning
that application performance generally improves with more
cores. When there are 10 or more cores, the curves seem flat.
However, when we zoom into the 10-26 core performance in
Figures 3(b) and (d), we see that the curves actually vary.
The Hash Join curves reach the lowest points around 18
cores then go up, while the Mergesort curves continue to
decrease until 24 or 26 cores. With 18 or more cores, Hash
Join utilizes over 95% of the main memory bandwidth. In-
creasing the number of cores while decreasing the cache size
only makes the situation worse, leading to the worse perfor-
mance. In contrast, Mergesort is not bounded by memory
bandwidth and its performance improves with more cores.3

When making a design choice in the CMP design space,
a typical goal is to optimize the performance of a suite of
benchmark applications (e.g., SPEC) measured by aggre-
gate performance metrics. Compared to WS, PDF pro-
vides larger freedom in the choice of design points in order
to achieve a desired level of performance (e.g., more than
K times faster than a reference configuration) for a mul-
tithreaded application. For example, for Hash Join, 10-26
cores with PDF achieve similar or better performance than
the best WS performance. Similarly, 20-26 cores with PDF
achieve similar or better performance than the best WS per-
formance for Mergesort. Thus designers are able to make
better trade-offs balancing sequential vs. multithreaded, and
computation-intensive vs. memory-intensive programs.

3From 24 cores (5MB cache) to 26 cores (1MB cache),
Mergesort with PDF experiences a large jump (41% in-
crease) in its L2 misses per instruction ratio. This explains
the jump in its execution time in Figure 3(d).

5.3 CMP Parameter Sensitivity Analysis
Figure 4 and Figure 5 compare the performance of PDF

vs. WS varying the L2 cache hit time and varying the main
memory latency. The results are similar to our default con-
figurations. In particular, compared to WS, PDF achieves a
factor of 1.21-1.62 fold relative speedups for Hash Join and
1.03-1.29 fold relative speedups for Mergesort.

Interestingly, from Figure 4, we can compare the PDF bar
for a 19-cycle L2 hit time with the WS bar for a 7-cycle hit
time. This comparison reveals that PDF running on a CMP
architecture with a relatively slow monolithic shared cache
(19-cycle hit time) retains its advantage over WS even when
WS is run on a CMP architecture with a faster distributed
on-chip cache (7-cycle hit time to a core’s local bank). This
is because for Hash Join and Mergesort, in our experiments,
the number of L2 hits is on par with the number of L2
misses, so the L2 miss time dominates any differences in L2
hit times.

5.4 Impact of Thread Granularity
In the course of parallelizing the benchmark applications,

we found that task granularity had a large impact on cache
performance and execution times. As discussed in Section 4.2,
the original versions of the Hash Join and Mergesort pro-
grams both suffered from being too coarse-grained. The
original Hash Join code generates only one thread per cache-
sized sub-partition. The original Mergesort code employs a
serial merging procedure. By parallelizing the probe proce-
dure within the processing of a sub-partition in Hash Join
and by parallelizing the merging procedure for Mergesort,
we removed serial bottlenecks and improved constructive

ONE-PASS WORKING-SET
PROFILING

• record a trace of all memory accesses

• assumes an infinite cache?

• compute a 2D binning of cache accesses

• cache age x job distance

• cache hits can be calculated for different cache sizes

AUTOMATIC TASK
COARSENING

Parallelize() decides based on threshold values for
different cache size / core count configurations

Function parallel f(param) {
If (Parallelize(param, FILE , LINE)) {

Spawn (parallel f(Subdivide(param, 1)));
Spawn (parallel f(Subdivide(param, 2)));
...
Spawn (parallel f(Subdivide(param, k)));
Sync ();
combine results(param);

} Else {
sequential f(param);

}
}

(a) Example divide-and-conquer style parallel program

CMP Configuration Calling Location Param
L2 Size # Cores File Line Threshold

....

....

(b) Table for implementing the Parallelize function

Figure 7: Incorporating task selection results into
parallel programs.

tures and would vary with different cache sizes at run-time.
Such tuning is error-prone and further complicated by the
presence of constructive cache sharing.

This tuning task can be greatly simplified by including
a parallelization table as part of the compiled program, as
shown in Figure 7(b). In the table, Param thresholds are in-
dexed by CMP configuration parameters and the locations
of parallelization decisions. At compile-time, these thresh-
olds are seeded with default values that correspond to very
fine-grain threading. The program is then profiled as de-
scribed in Section 6.1. Each task group is also annotated
with the corresponding param value by recording the value
at every spawn invocation. After that, the above analysis is
used to determine the stopping task groups for the combina-
tions of CMP configurations and calling locations. Finally,
the default threshold values in the table are replaced with
the param values that are associated with the stopping task
groups in the final executable.

Note that we obtain the working set information once
through a single profiling pass, but we need to perform a
task coarsening analysis for every CMP configuration be-
cause the stopping criterion is configuration dependent. For-
tunately, the number of CMP configurations can be reason-
ably bounded by the expected lifetime of the executable.
Moreover, the run-time table lookup costs can be reduced,
with appropriate compiler/system support, by identifying
the CMP configuration at program initialization and replac-
ing the lookup with a single memory read.

Finally, we evaluate the effectiveness of the automatic task
coarsening algorithm. Figure 8 compares three schemes us-
ing the Mergesort benchmark while varying the number of
cores. The left bar uses the manually selected tasks and
corresponds to our previous results in Section 5. The mid-
dle and right bars both use the same task selections recom-
mended automatically by our algorithm. The difference is
how we perform CMP simulation using the task selections.
For the right bar, we manually change the Mergesort code
to realize the selection. We run CMP simulation based on
the new trace. In contrast, for the middle bar, we use the
same finest-grain trace in the CMP simulation but simply
substitute a new task DAG based on the recommended task

32 cores 16 cores 8 cores
1.00

1.02

1.04

1.06

1.08

1.10

ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

 to
 b

es
t

previous
cache/(2*cores) dag
cache/(2*cores) actual

Figure 8: Effectiveness of the task selection schemes.

grouping. Therefore, compared to the right bar, an indi-
vidual task of the middle case may be less efficient because
it still contains the parallel code (e.g., parallel merging).
From Figure 8, we see that the right bars are within 5% of
the optimal in all cases, demonstrating the effectiveness of
our automatic task coarsening scheme.

7. CONCLUSION
The advent of Chip Multiprocessor (CMP) platforms re-

quires a reevaluation of standard practices for parallel com-
puting. While traditional Symmetric MultiProcessors (SMPs)
encourage coarse-grained parallelism with largely disjoint
working sets in order to reduce interprocessor coherence traf-
fic (often the key system bottleneck), CMPs encourage fine-
grained parallelism with largely overlapping working sets in
order to increase on-chip cache reuse.

This study demonstrates that the Parallel Depth First
(PDF) scheduler, which was designed to encourage coopera-
tive threads to constructively share the on-chip cache, either
matches or outperforms the Work Stealing (WS) scheduler
on a variety of CMP configurations for all the fine-grained
parallel programs studied. By making more effective use of
cache resources, the PDF scheduler also broadens the design
space for microprocessor designers—potentially enabling the
inclusion of more cores at the expense of cache resources that
are less critical given PDF. Finally, task granularity plays
a key role in CMP cache performance, and we present an
automatic approach for selecting effective task grain sizes
when using PDF.

8. ACKNOWLEDGMENTS
We would like to acknowledge Ryan Johnson and Yevgen

Voronenko for their early work in evaluating PDF vs. WS
on a set of scientific applications, as part of a CMU course
project. The fourth author is now with AMD.

9. REFERENCES
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The

data locality of work stealing. Theory of Computing
Systems, 35(3), 2002.

[2] A. Agarwal, M. Horowitz, and J. L. Hennessy. An
analytical cache model. ACM Trans. on Computer
Systems, 7(2), 1989.

[3] J. Anderson and J. Calandrino. Parallel real-time task
scheduling on multicore platforms. In RTSS, 2006.

[4] R. Balasubramonian, D. H. Albonesi,
A. Buyuktosunoglu, and S. Dwarkadas. A dynamically

CONCLUSION

• PDF matches or outperforms WS on a variety of
configurations

• task granularity plays a key role in cache performance

DISCUSSION

• Who fully understood the automatic granularity selection?

• Is this a general approach or did the paper provide specific
solution for hand-picked benchmark algorithms?

• Are there counter-examples where breadth-first is superior?

• Can we annotate jobs with metadata on their data access
behavior? (Would benefit STM too.)

