SYNTHESIZING CONCURRENT SCHEDULERS FOR IRREGULAR ALGORITHMS

Donald Nguyen, Keshav Pingali

TERMINOLOGY

irregular algorithm

- opposite: dense arrays
- work on pointered data structures like graphs
- shape of the graph changes during execution
- active nodes + neighborhood
- here: unordered algorithms

TERMINOLOGY

concurrent schedulers

- problem is decomposed into activities
- scheduling assigns them to processors
- order + placement
- static or dynamic scheduling

TERMINOLOGY

static scheduling

• enumerate activities and dependencies at compile-time

dynamic scheduling

- activities are created dynamically
- dependencies cannot be evaluated statically
- execution time estimates unknown

STATE OFTHE ART

- dynamic scheduling only for varying execution times
 - OpenMP guided self-scheduling
- irregular algorithms often use handcrafted schedulers
 - ... even for the sequential implementation
- schedulers are concurrent data structures themselves, so they multiply the parallel programming problem

CONTRIBUTION

Synthesize concrete scheduler implementations from specifications.

IDICITICITICATIONS TROM SPECIFICATIONS

ALGORITHMS

- Delaunay Triangulation
- Delaunay Mesh Refinement
- Inclusion-based Points-to Analysis
- Single-source Shortest-path
- Preflow-push

WORKSET

foreach (e : Set S) $\{B(e)\}$ — The loop body B(e) is executed for each item e of set S. The order in which iterations execute is indeterminate and can be chosen by the implementation. There may be dependences between the iterations. An iteration may add items to S during execution.

SPECIFICATIONS

- global rule for the initial workset
- local rule for threadlocal workset
- rules can be composed sequentially

PGlobal: D Local: D ::= Specification D $R_{\rm NF}^{*}$ $R_{\rm F}?$ Ordering rule ::= $R_{
m F}$ Final rule **FIFO** ::= LIFO Random $R_{\rm NF}$ ChunkedFIFO(k)::= Non-final rule ChunkedLIFO(k) $Ordered(f_D)$ OrderedByMetric($f_{\rm M}$) kInteger $f_{\rm D}$ $\mathbf{T} \times \mathbf{T} \rightarrow \mathbf{bool}$ fм $T
ightarrow \mathbb{R}$

SPECIFICATIONS

Algorithm	Order	Specification
DMR	Bucketed triangle angle (AS2)	OrderedByMetric(λt . minangle(t)) FIFO
	Local stack (AS1)	Global: ChunkedFIFO(k) Local: LIFO
DT	BRIO (AS1)	OrderedByMetric($\lambda p. p. round$) ChunkedFIFO(k)
	Random	Random
PFP	FIFO	FIFO
	HL order (AS1)	OrderedByMetric($\lambda n n.height$) FIFO
PTA	LRF	FIFO
	Split worklists (BS-F)	
SSSP	Bellman-Ford	FIFO
	Delta-stepping (AS1)	OrderedByMetric(λn . $\lfloor 2 * n.w/\Delta \rfloor + (n.light) ? 0 : 1)$ FIFO
	Dijkstra (AS2)	Ordered($\lambda a, b. a.w \leq b.w$)

IMPLEMENTATION

workset interface:

void add(T t)
T poll()

- sequential rule composition by nested worksets
- relaxed poll semantic helps for race-free lock elision

T poll-s()

OPTIMIZATION

Ignore Size	Use Serial	Use Bounded	t = 1	t = 8
+	+	+	0.0	0.0
-	+	+	0.8	12.1
+	-	+	2.4	5.5
-	-	+	7.8	7.7
+	+	-	3.6	3.5
_	+	-	11.3	11.5
+	-	-	5.0	16.8
-	-	-	2.9	17.5

GALOIS

• ava

- provides workset iterator
- tracks active nodes and neighborhoods
- records undo actions to roll back conflicting activities (overlapping neighborhoods)
- like a coarse-grained STM

EVALUATION

	BASE	RAND	LIFO	FIFO	WS-L	WS-F	BS-L	BS-F	AS2	AS1
					Nehalem					
DMR	12.88	14.80	11.45	13.09	11.51	13.27	12.76	13.17	15.56	11.62
DT	25.04					25.42				14.78
PFP	110.93	109.77	169.86	115.40	173.47	116.44	110.18	118.59		45.94
PTA	13.87	-		12.58		12.74	20.26	12.84		
SSSP	-	-				-	-	-	7.66	4.96
			황동의 강경영		Shanghai				and The start	
DMR	16.29	19.52	13.55	16.76	13.74	16.76	16.25	16.71	19.59	13.64
DT	43.40					43.55				27.86
PFP	237.04	210.57	320.24	237.17	314.53	234.13	216.50	217.67		74.26
PTA	19.99	-	-	18.80	-	18.79	26.44	18.82		
SSSP	-	-	-	-	-	-	-	-	11.08	9.53
					Niagara					1.2
DMR	61.76	68.10	54.79	63.51	53.84	63.31	62.86	64.17	77.81	60.33
DT	178.21					179.00				149.42
PFP	787.05	734.27	1264.61	741.01	1297.71	775.04	720.20	827.07		342.41
PTA	59.17	-	-	57.73	-	57.30	76.16	56.99		
SSSP	-	-	-	-		-	-	-	33.84	23.35

EVALUATION

	BASE	RAND	LIFO	FIFO	WS-L	WS-F	BS-L	BS-F	AS2	AS1
				Nehal	lem ($t \leq$	8)				and a second
DMR	5.70	4.82	0.95	3.81	4.35	5.13	2.64	3.53	2.01	6.15
DT	2.21					2.09				2.35
PFP	1.30	0.71	0.20	1.15	0.72	2.30	0.37	0.89		3.35
PTA	2.83	-	- 1	3.53	-	2.05	2.37	3.77		
SSSP	-	-	-	-	-	-	-	-	0.61	3.16
				Shang	hai ($t \leq 1$	16)		Contraction of the		
DMR	7.85	3.43	0.95	3.74	6.94	7.53	1.91	3.83	2.32	10.45
DT	2.64					2.65				2.53
PFP	1.28	0.62	0.20	1.00	0.65	2.19	0.37	0.74		2.56
PTA	3.69	-	-	3.63	-	3.08	3.25	5.03		
SSSP	-	-	-	-	-	-	-	-	0.80	3.04
				Niaga	ara ($t \leq 3$	2)				
DMR	18.77	5.95	0.89	6.81	11.47	18.53	3.60	5.89	3.59	21.53
DT	5.43					5.48				3.29
PFP	2.30	1.25	0.32	2.84	2.18	4.46	0.80	2.13		5.92
PTA	4.20	-	-	4.49		5.42	4.62	6.16		
SSSP	-	-	-	-	-	-	-	-	0.50	2.33

SCHEDULING THREADS FOR CONSTRUCTIVE CACHE SHARING ON CMPS

Shimin Chen et al. CMU & Intel Pittsburgh

MERGESORT

Work Stealing:

Parallel Depth First:

L2 cache miss L2 cache hit Mixed

DISCUSSION

- nice lightweight specification language for workset iterator
 - brings research on parallel algorithms & data structures closer to programming reality
- looks amenable to a C++ template implementation
 - I would like to see a non-Java evaluation
 - maybe someone should repeat the measurements...

GCD

dispatch_queue_create

Creates a new dispatch queue to which blocks can be submitted.

dispatch_queue_t dispatch_queue_create(
 const char *label,
 dispatch_queue_attr_t attr);

attr Currently unused; pass NULL.