
SYNTHESIZING
CONCURRENT SCHEDULERS

FOR IRREGULAR ALGORITHMS

Donald Nguyen, Keshav Pingali

1 Workset ws = new Workset (p o i n t s) ;
2 foreach (P o i n t p : ws) {
3 Cav i t y c = new Cav i t y (p) ;
4 c . expand () ;
5 c . r e t r i a n g u l a t e () ;
6 G. upda t e (c) ;
7 c . d i s p a t c h P o i n t s () ;
8 }

Figure 1. Pseudocode for Delaunay triangulation.

Figure 2. Example of processing an active point (hollow and red)
for Delaunay triangulation. Circles are circumcircles of triangles
containing the active point.

they will be processed in the next-to-last round is 1

2
, and so on until

the first round. For the first round, all remaining points are pro-
cessed with probability one. Within a round, points are processed
according to the spatial divisions of an oct-tree.

2.2 Delaunay Mesh Refinement

Delaunay mesh refinement (DMR) [7] is an algorithm related to
Delaunay triangulation. Given a Delaunay triangulation, triangles
may have to satisfy additional quality constraints beyond that guar-
anteed by triangulation. To improve the quality of a triangulation,
Delaunay mesh refinement iteratively fixes “bad” triangles, which
do not satisfy the quality constraints, by adding new points to the
mesh and re-triangulating. Refining a bad triangle may itself in-
troduce new bad triangles, but it can be shown that, at least in
2D, this iterative refinement process will terminate and produce a
guaranteed-quality mesh.

Figure 3 shows the pseudocode for this algorithm. It is similar
to Delaunay triangulation, except that activities are centered on tri-
angles rather than points. In both cases, a cavity is expanded and
re-triangulated. However, in DMR, new bad triangles can be cre-
ated that must be processed as well. They are tracked in a workset.3

Additionally, different orders of processing bad triangles lead to
different meshes, but all such meshes satisfy the quality constraints
and are acceptable outcomes of the refinement process [7]. In con-
trast, for Delaunay triangulation, different orders still produce the
same triangulation.

Naive implementations of DMR have quadratic worst-case run-
ning times [31] although they perform well in practice. Miller
proved sub-quadratic worst-case time of a modification of DMR
that processes triangles in decreasing circumcircle diameter to-
gether with other changes [27]. In Shewchuk’s Triangle program,
bad triangles are placed into buckets according to their minimum
angle, each bucket stores triangles in FIFO order, and buckets are
processed in increasing angle order [32]. Kulkarni et al. showed
that a parallel implementation of DMR that distributes the initial

3 Throughout this paper, we use the colloquial term workset, although
more formally, these objects behave as bags or multisets because they may
contain duplicate items.

1 Workset ws = new Workset (G . b a dT r i a n g l e s ()) ;
2 foreach (T r i a n g l e t : ws) {
3 i f (!G . c o n t a i n s (t)) cont inue ;
4 Cav i t y c = new Cav i t y (t) ;
5 c . expand () ;
6 c . r e t r i a n g u l a t e () ;
7 G. upda t e (c) ;
8 ws . addAl l (c . b a dT r i a n g l e s ()) ;
9 }

Figure 3. Pseudocode for Delaunay mesh refinement.

bad triangles among threads and uses thread-local stacks for newly
created bad triangles performs well in practice [18].

2.3 Inclusion-based Points-to Analysis

Inclusion-based points-to analysis (PTA), also known as Ander-
sen’s algorithm [2], is a flow and context-insensitive static analysis
that determines the points-to relation for program variables. PTA
is a fixpoint algorithm that computes the least solution to a system
of set constraints. The basic algorithm maintains a workset of pro-
gram variables whose points-to relations need to be computed. For
each variable in the workset, the algorithm examines the system of
constraints to see if the current variable satisfies the constraints. If
so, the algorithm continues processing the remaining variables. If
not, some set of program variables are modified to satisfy the con-
straints. These modified variables are then added to the workset,
and the algorithm continues until the workset is empty. Hardekopf
and Lin showed how the basic fixpoint algorithm augmented with
sophisticated cycle-detection can scale to large problem sizes [14].
From this algorithm, Mendez-Lojo et al. produced the first parallel
implementation of this algorithm [24]. Our results in Section 5 are
based on this implementation.

Since this is a fixpoint algorithm, all orders of processing vari-
ables will produce the same solution. Many heuristics have been
proposed for organizing the workset, such as processing variables
in least recently fired (LRF) order [29] or dividing the workset into
current and next parts [28]. Variables are processed from the cur-
rent part, but newly active variables are enqueued onto the next
part. When the current part is empty, the roles of the current and
next parts are swapped. Hardekopf and Lin report that the divided
workset approach performs better in practice [14].

2.4 Single-source Shortest-path

Given a weighted, directed graph G = (V,E), a weight function
w : E → R mapping edges to real-valued weights, and a source
node s ∈ V , the single-source shortest-path (SSSP) problem is
to find the least weight path from s to all other nodes in the
graph. The Bellman-Ford algorithm solves this problem on graphs
with arbitrary weights. In the case of graphs with no negative
weight edges, there are specialized algorithms such as Dijkstra’s
algorithm. In this paper, we consider the case where graphs have
no negative weight edges. The Bellman-Ford algorithm can also be
optimized for this case by reformulating it as a fixpoint algorithm.
Instead of processing each node |V | times, there is a workset that
maintains nodes whose distances have changed; only those nodes
are processed. One parallel SSSP algorithm is delta-stepping [25].

Each one of these algorithms can be viewed as an instantiation
of a generic algorithm with different scheduling policies (see Fig-
ure 4). Each node n has a tentative distance estimate n.dist (initial-
ized to ∞), and there is a set ws of distance requests (u, d, light)
indicating that node u can be updated with distance d. The addi-
tional light value is only used by the delta-stepping algorithm. If
the requested distance d is less than the current distance u.dist at
node u, the current distance is updated. This generates a set of new

3 2011/2/24

TERMINOLOGY

irregular algorithm

• opposite: dense arrays

• work on pointered data structures like graphs

• shape of the graph changes during execution

• active nodes + neighborhood

• here: unordered algorithms

TERMINOLOGY

concurrent schedulers

• problem is decomposed into activities

• scheduling assigns them to processors

• order + placement

• static or dynamic scheduling

TERMINOLOGY

static scheduling

• enumerate activities and dependencies at compile-time

dynamic scheduling

• activities are created dynamically

• dependencies cannot be evaluated statically

• execution time estimates unknown

STATE OF THE ART

• dynamic scheduling only for varying execution times

• OpenMP guided self-scheduling

• irregular algorithms often use handcrafted schedulers

• … even for the sequential implementation

• schedulers are concurrent data structures themselves, so they
multiply the parallel programming problem

CONTRIBUTION

Synthesize concrete scheduler
implementations from specifications.

ALGORITHMS

• Delaunay Triangulation

• Delaunay Mesh Refinement

• Inclusion-based Points-to Analysis

• Single-source Shortest-path

• Preflow-push

WORKSET

tries to steal activities from it. Work-stealing is parameterized by
the order maintained in the local deque (usually LIFO) and how a
thread selects a victim (usually at random). Work-stealing was im-
plemented in MultiLisp [13] and was later popularized by the Cilk
language [4], where it is used to implement fork-join parallelism. It
is now available in many programming environments [17, 21, 22].

The key assumptions in this work on task-parallelism are that
any dependences between activities are captured by fork-join con-
trol dependences and are known statically. While these assumptions
are reasonable for regular (dense-array) algorithms and divide-and-
conquer algorithms, they do not hold for most irregular graph algo-
rithms because dependences in these algorithms are complex func-
tions of runtime values (e.g., the shape of the graph and the values
on nodes and edges), which may themselves change during execu-
tion. An abstract description of parallelism in irregular algorithms
is the following. At each step of the algorithm, there are certain ac-
tive nodes in the graph where computation needs to be performed.
Performing the computation at an active node may require read-
ing or writing other graph nodes and edges, known collectively as
the neighborhood of that activity (the neighborhood is usually dis-
tinct from the neighbors of the active node). In general, there are
many active nodes in a graph, so a sequential implementation must
pick one of them and perform the appropriate computation. In the
unordered algorithms considered in this paper, the implementation
is allowed to pick any active node for execution.1 The final out-
put may be different for different orders of executing active nodes,
but all such outputs are acceptable, a feature known as don’t-care
non-determinism. A parallel implementation of such an algorithm
can process active nodes simultaneously, provided their neighbor-
hoods do not overlap (this condition can be relaxed but is sufficient
for correct execution). However, the neighborhood of an activity is
generally not known until the activity has finished execution. This
parallelism is known as amorphous data-parallelism [30].

Efficient exploitation of amorphous data-parallelism requires
far more sophisticated runtime support than fork-join parallelism
or DO-ALL parallelism for the following reasons.

1. In most irregular algorithms, nodes become active dynamically,
so the number of activities is not known statically.

2. In general, the neighborhood of an activity may be known only
after that activity completes execution. Therefore, it may be
necessary to use optimistic or speculative parallelization.

3. Most importantly, the number of activities that are executed
by an algorithm may be dramatically different for different
schedules.

For these reasons, even sequential implementations of irregu-
lar algorithms often use handcrafted, algorithm-specific scheduling
policies; for example, some mesh refinement algorithms process
triangles or tetrahedra in decreasing size order since this can reduce
the total amount of refinement work [27]. Section 2 describes some
of the more important policies in the literature. However, following
these orders strictly can dramatically reduce parallelism, so parallel
implementations of irregular algorithms often use more complex
scheduling policies that trade off extra work for increased paral-
lelism. These schedulers are themselves concurrent data structures
and add to the complexity of parallel programming. In addition,
they cannot easily be reused for other applications.

In this paper, we present a flexible and efficient approach for
specifying and synthesizing schedulers for sequential and parallel
implementations of irregular algorithms. We distinguish between
scheduling policies, which are descriptions (possibly informal) of
the order in which activities should be processed (e.g., LIFO, FIFO,

1 In contrast, ordered algorithms have a specific order in which active nodes
must be executed.

etc.), scheduling specifications, which are formal descriptions of
scheduling policies, and schedulers, which are concrete implemen-
tations of scheduling specifications. A schedule is a specific map-
ping of activities to processors in time.

The rest of this paper is organized as follows. In Section 2, we
describe several irregular algorithms and scheduling policies stud-
ied in the literature. Section 3 describes a language that concisely
encodes these policies as scheduling specifications. Section 4 de-
scribes how concurrent schedulers are synthesized from these spec-
ifications. Our modular and compositional approach can produce
efficient schedulers without requiring users to write complex, con-
current code. In Section 5, we evaluate our synthesized schedulers
against fixed-function schedulers that use work-stealing with lo-
cal LIFOs, work-stealing with local FIFOs and bulk-synchronous
worklists.2 We show that (1) for the same scheduling policy, fixed-
function schedulers and synthesized schedulers have similar perfor-
mance, and (2) for some algorithms, algorithm-specific schedulers
synthesized by our approach outperform fixed-function schedulers.
Section 6 compares our approach with previous work in scheduling
and synthesis. Finally, Section 7 summarizes our contributions.

2. Algorithms

In this section, we describe five algorithms that exhibit amorphous
data-parallelism. All the algorithms are unordered, which means
that activities can execute in any order, and each algorithm has at
least one algorithm-specific scheduling policy that has been pro-
posed in the literature. Pseudocode for these algorithms is writ-
ten using the Galois programming model [19], which is a sequen-
tial, object-oriented programming model augmented with a Galois
unordered-set iterator, which is similar to set iterators in C++ or
Java but permits new items to be added to a set while it is being
iterated over.

• foreach (e : Set S) {B(e)} — The loop body B(e) is exe-
cuted for each item e of set S. The order in which iterations
execute is indeterminate and can be chosen by the implemen-
tation. There may be dependences between the iterations. An
iteration may add items to S during execution.

2.1 Delaunay Triangulation

Finding the Delaunay triangulation (DT) of a set of points is a clas-
sic computational geometry problem. There are many algorithms
for finding the triangulation; here, we describe the incremental al-
gorithm of Bowyer and Watson [5, 35]. Each point is associated
with the triangle that contains it. We assume points are in 2D. Ini-
tially, there is one large triangle that covers all the points. Each
point p calculates all triangles whose circumcircles include p. This
is the cavity of p. The cavity is re-triangulated, p is removed and the
remaining points of the cavity are redistributed among their corre-
sponding triangles. Figure 1 shows the pseudocode. G is the graph
representing the triangulation. Figure 2 shows an example of pro-
cessing one point.

All orders of processing points lead to the same Delaunay tri-
angulation. Clarkson and Shor have shown that selecting points at
random is optimal [8]. Amenta et al. present an algorithm called
biased randomized insertion order (BRIO) that takes advantage of
locality while still maintaining the optimality of randomness [1].
Briefly, let n be the number of points to triangulate. Points are pro-
cessed in log n rounds. The probability that a point is processed in
the final round is 1

2
. For the remaining points, the probability that

2 Fixed-function schedulers and synthesized schedulers are not mutually
exclusive. In particular, work-stealing with local LIFOs can be seen as one
implementation of a LIFO policy. However, in this paper, we separate the
two to clearly delineate our contribution.

2 2011/2/24

SPECIFICATIONS

• global rule for the
initial workset

• local rule for thread-
local workset

• rules can be
composed sequentially

P ::= Global:D Local:D Specification
D ::= RNF

∗ RF? Ordering rule
RF ::= FIFO Final rule

| LIFO
| Random

RNF ::= ChunkedFIFO(k) Non-final rule
| ChunkedLIFO(k)
| Ordered(fD)
| OrderedByMetric(fM)

k Integer
fD T× T → bool

fM T → R

Figure 6. Scheduler specification syntax.

!FIFO"(a, b) = time(a) < time(b)
!LIFO"(a, b) = time(a) > time(b)

!Random"(a, b) = fU(a) < fU(b)
!ChunkedFIFO(k)"(a, b) = #time(a)/k$ < #time(b)/k$
!ChunkedLIFO(k)"(a, b) = #time(a)/k$ > #time(b)/k$

!Ordered(fD)"(a, b) = fD(a, b)
!OrderedByMetric(fM)"(a, b) = fM(a) < fM(b)

!R1 R2 . . ."(a, b) =

{

!R2 . . ."(a, b) if a =R1
b

!R1"(a, b) otherwise

Figure 7. Rule semantics.

assumes that items have already been assigned rounds according
to the random distribution described previously. To process light
requests before heavy ones, the delta-stepping specification splits
each bucket into two: one part for the light requests and one part
for the heavy requests.

4. Synthesis

It is straightforward to implement sequential schedulers for policies
specified in the language described in Section 3. Each rule can be
implemented by a workset, which is an object with the following
methods:

• void add(T t) — adds an item to the workset
• T poll () — removes and returns the next item to execute; if
there are no items left, returns a null value distinct from all
items added to the workset

Items are added to the workset by invoking the add method, which
returns the value void when it completes. To get items from the
workset, the poll method is invoked; if this method invocation does
not find any items in the workset, it returns a unique null value.

The goal of this section is to synthesize concurrent worksets
that implement this functionality. One approach is to compose a set
of library components, each of which is a workset by itself. There
is a workset for each final rule; non-final rules are implemented by
worksets parameterized by a function that constructs instances of
the next workset in the ordering sequence, the inner workset.

However, a naive implementation along these lines can be in-
correct in a concurrent setting, as we argue in Section 4.1, and the
result may not satisfy any intuitive notion of correctness such as
linearizability [16]. To address this problem, we propose a relaxed
correctness condition in Section 4.2 that requires modifications to
the semantics of worksets and to how they are used by clients.

In Section 4.3, we discuss two important consequences of this
relaxed condition: (1) all final scheduling policy rules in Section 3
have implementations that satisfy the relaxed condition, and (2)
non-final worksets satisfy the relaxed condition assuming only that

their inner worksets satisfy the relaxed condition. This permits
compositional construction of worksets.

In Section 4.4, we discuss the implementation of scheduling
policies in Java and several optimizations to improve the perfor-
mance of the synthesized worksets.

4.1 Problems with Naive Composition

To understand the issues that arise in composing worksets, consider
the implementation of the OrderedByMetric rule in lines 1-23 of
Figure 9, and its client, a simple runtime system, in lines 24-30.
The runtime system manages threads and assigns them work. The
workset creates an array of inner worksets and processes each
inner workset in ascending order. This workset is essentially an
implementation of a priority queue in which the range of keys is
known a priori; there is one inner workset (bucket) for each key
value. Similar worksets have been used in a variety of sequential [1,
6, 32] and parallel implementations [25] of irregular algorithms.

Unfortunately, the workset in Figure 9 can exhibit incorrect
behavior because it is possible for items to be inserted into the
workset but never retrieved. Consider two threads T1 and T2, where
T1 is executing the poll method and T2 is executing the add method.
The following sequence of events may take place:

1. T1 executes line 14. The cursor value is i, and the the poll
method on buckets[i] returns null.

2. T2 executes lines 6-8. The value of index = i, so an item is
added to buckets[i].

3. T1 executes lines 15 and 16 of the poll method, incrementing
cursor.

Clearly, the item added by T2 is now lost. The race exists even
if each line of the implementation is atomic, so that reading and
updating the cursor on line 8 or incrementing its value on line 16
is performed atomically. To use this implementation correctly in a
concurrent context, we must ensure that when poll moves to the
next bucket, no thread is adding an element to a higher priority
bucket. One solution is to use transactional memory [15], but the
overhead of software transactional memory systems is high, espe-
cially for a performance-critical component like a scheduler. Hard-
ware transactional memory systems exist, but they are not widely
available.

We summarize these observations.

• In general, simple compositions of worksets do not produce
correct concurrent worksets.

• Composition of concurrent worksets is problematic even in
absence of having to maintain a particular order of items.

4.2 Relaxed Concurrent Semantics

In this section, we describe a solution to the problem of compos-
ing worksets that takes advantage of the fact that scheduling spec-
ifications for unordered algorithms are inherently “fuzzy” and are
intended as suggestions to the runtime system rather than as com-
mands that must be followed exactly. At a high level, the idea is the
following.

• We relax the behavior of the poll method so that in a parallel
setting, it may return a different item than the one it would have
returned in a sequential setting. In addition, we allow poll to
returnnull even when there are still items in the workset. These
modifications permit us to implement poll with low overhead.

• To compensate for the relaxed behavior of poll, we introduce a
new method poll-s that is similar to poll but is never executed
concurrently with other invocations. It returns null only when
the workset is truly empty.

5 2011/2/24

SPECIFICATIONS

Algorithm Order Specification Used by

DMR Bucketed triangle angle (AS2) OrderedByMetric(λt. minangle(t)) FIFO [32]
Local stack (AS1) Global: ChunkedFIFO(k) Local: LIFO [18]

DT BRIO (AS1) OrderedByMetric(λp. p.round) ChunkedFIFO(k) [1]
Random Random [8]

PFP FIFO FIFO [12]
HL order (AS1) OrderedByMetric(λn. − n.height) FIFO [6]

PTA LRF FIFO [29]
Split worklists (BS-F) [14, 28]

SSSP Bellman-Ford FIFO [9]
Delta-stepping (AS1) OrderedByMetric(λn. "2 ∗ n.w/∆$ + (n.light) ? 0 : 1) FIFO [25]
Dijkstra (AS2) Ordered(λa, b. a.w ≤ b.w) [9]

Figure 8. Application-specific scheduling specifications.

1 c l a s s Orde redByMet r i cWorkse t implements Workset {
2 Workset [] bu cke t s ;
3 i n t c u r s o r ;
4
5 vo id add (T t) {
6 i n t i n d ex = f l o a t T o I n t (fM(t)) ;
7 bucke t s [i n d ex] . add (t) ;
8 i f (i n d ex < c u r s o r) c u r s o r = i ndex ;
9 }
10
11 T p o l l () {
12 T r e t v a l = nu l l ;
13 whi le (c u r s o r < bucke t s . l e n g t h) {
14 r e t v a l = bucke t s [c u r s o r] . p o l l () ;
15 i f (r e t v a l == nu l l)
16 c u r s o r ++;
17 e l s e
18 break ;
19 }
20 re turn r e t v a l ;
21 }
22 }
23
24 Orde redByMet r i cWorkse t s c h e d u l e r ;
25 ThreadPoo l . f o r k (N) ; / / spawn N t h r e a d s
26 T i t em ;
27 whi le ((i t em = s c h e d u l e r . p o l l ()) != nu l l) {
28 o p e r a t o r . c a l l (i tem , s c h e d u l e r) ;
29 }
30 ThreadPoo l . j o i n (N) ;

Figure 9. Naive bucketed scheduler and its use in a parallel run-
time system.

Intuitively, if most items are retrieved from the workset using
the poll method, and poll-s is used infrequently to determine if the
workset is truly empty, we get a solution that is both correct and
efficient. In this section, we formalize this behavior, and in Sec-
tion 4.3, we show how this behavior is closed under composition.

We model a workset by its history H , which is a finite se-
quence of events, where an event is either (1) a method invocation,
(2) a response to a method invocation, or (3) a special termina-
tion event, 〈term〉. We write 〈o.m(a, b, . . .) T 〉 for an invoca-
tion on object o of method m with arguments a, b, . . . by thread
T , 〈o.m(a, b, . . .)/r T 〉 for a response to method m with re-
turn value r, and void for the unit return value. An invocation
〈o1.m1(a1, b1, . . .) T1〉matches a response 〈o2.m2(a2, b2, . . .)/r T2〉
if o1 = o2, m1 = m2, a1 = a2, b1 = b2 and so on, and T1 = T2.
We omit the object and/or thread if it is clear from context. We use
x1, x2, . . . as variables over arguments or return values.

An invocation is pending in H if it has no matching response.
A history is whole if it has no pending invocations and it contains
exactly one termination event and that is the last event in the history.
A history restricted to object o or thread T is the subsequence with

only events on o or by T respectively and possibly a termination
event. Without loss of generality, we assume items are unique. The
notation a →H b denotes that event a precedes event b in history
H ; we write a → b when the history is clear from context.

Property 1 is a formal description of the behavior of poll and
poll-s. Condition B1 states that (1) items returned by poll and poll-s
must have been added earlier by the add method, and (2) a given
item can only be returned once. Both requirements are captured by
the injective function M . Condition B2 states that poll-s cannot be
invoked when there are pending method invocations. Condition B3
states that if poll-s returns null, all previously added items have
been retrieved by poll or poll-s, and the workset is truly empty.
This is captured by requiring M to be a bijective function.

Property 1 (Weak Bag). A history H models a weak bag if the
following are true:

B1. There is an injective functionM from non-null response events
e1 = 〈poll()/x1 T1〉 or e1 = 〈poll-s()/x1 T1〉 to invocation
events e2 = 〈add(x2) T2〉 such that (1) M(e1) = e2, (2)
x1 = x2, and (3) e2 → e1.

B2. For each invocation event e = 〈poll-s() T 〉 of poll-s in H =
H1, e,H2, there are no pending invocations inH1.

B3. For each null response event e = 〈poll-s()/null T 〉 of poll-s
in H = H1, e,H2, H1 satisfies condition B1 and M is a
bijective function.

A workset is correct if it only generates whole histories satisfy-
ing Property 1. It is the responsibility of the client to use the workset
properly by never invoking poll-s concurrently with other methods.
This form of correctness may seem particularly weak since it does
not refer to the sequential ordering semantics. However, we have
found it useful because it includes many natural compositions of
worksets as well as most hand-written schedulers. A linearizable
bag is a correct workset if one considers poll-s the same as poll.
Likewise, a bag with a single lock guarding all its methods is also
a correct workset.4

One correct workset and its proper use by a runtime system is
the following modification of Figure 9. After line 30, the runtime
system should call poll-s; if the returned value is a non-null item,
the system should process that item and go to line 25 to continue
execution. The poll-s method should walk the bucket array calling
poll-s on each inner workset and return the first non-null item if it
exists.

The implementations in the Galois system of the final rules in
Figure 6 satisfy Property 1 since the LIFO and FIFO rules are
implemented by a linearizable stack and queue respectively, and the

4 It is possible to introduce deadlock when arbitrarily composing worksets
with locks. However, compositions based on Theorem 2 whose implemen-
tations are themselves wait-free do not introduce deadlocks.

6 2011/2/24

IMPLEMENTATION

• workset interface:

void add(T t)
T poll()

• sequential rule composition by nested worksets

• relaxed poll semantic helps for race-free lock elision

T poll-s()

OPTIMIZATION

Lambda<T , I n t e g e r> i n d e x e r = new Lambda<T , I n t e g e r >() {
pub l i c I n t e g e r c a l l (T i t em) {

re turn i t em . h e i g h t ;
}

}
P r i o r i t y . f i r s t (Orde redByMet r i c . c l a s s , i n d e x e r)

. t h e n (FIFO . c l a s s)

Figure 11. Concrete syntax of AS1 for PFP.

P r i o r i t y . f i r s t (G1 . c l a s s , a r g s) . t h e n (. . .)
. t h e nL o c a l l y (L1 . c l a s s , a r g s) . t h e n (. . .)

Figure 12. Concrete syntax of Global:G1 . . . Local:L1

chunks are never discarded but are instead refilled from the global
workset.

4.4 Implementation and Optimization

In the Galois system, the specification language is implemented
as a library-based domain-specific language in Java. Each rule
is represented by a Java class that implements the corresponding
workset. Figure 11 gives an example. Figure 12 gives the general
form. The sequence of method calls produces an AST that is passed
to the workset synthesizer.

Additionally, we take advantage of the semantics of rules to
choose optimized workset implementations.

• Use Serial: As mentioned in Section 4.3, the inner worksets
used by ChunkedFIFO and ChunkedLIFO are thread-local. The
worksets generated from the local part of a specification are also
thread-local. Thread-local worksets can be implemented with
non-concurrent data structures that are typically more efficient
than concurrent ones.

• Ignore Size: In certain cases, worksets require inner worksets
to maintain an estimate of the number of items they contain.
The chunked worksets use this to keep track of when a chunk
is full. The Ordered workset uses these sizes to implement
commutativity conditions. This overhead may be significant
in concurrent worksets because keeping track of sizes may
require atomic increments. When sizes are not needed, the size
metadata and effort maintaining it may be removed.

• Use Bounded: When a chunked workset is used, each inner
workset can be no larger than the chunk size. The inner work-
sets can be optimized for a bounded size rather than using dy-
namically sized data structures.

The synthesizer applies rewrite rules over the AST to detect the
above cases and selects, if possible, implementations that are non-
concurrent, do not keep track of their size or are bounded. Table 1
summarizes the impact of these optimizations for the PFP applica-
tion and a synthesized scheduler called BASE (described in more
detail in Section 5). Positive numbers indicate how much slower a
combination is relative to all optimizations on. We chose to high-
light this application and scheduler because all the optimizations
described above can be applied and the amount of work done per
workset item is small, which increases the relative impact of an ef-
ficient workset implementation. From the table, it is clear that these
optimizations on worksets have a significant and mostly beneficial
impact on single-threaded and multi-threaded performance.

Ignore Size Use Serial Use Bounded t = 1 t = 8
+ + + 0.0 0.0
- + + 0.8 12.1
+ - + 2.4 5.5
- - + 7.8 7.7
+ + - 3.6 3.5
- + - 11.3 11.5
+ - - 5.0 16.8
- - - 2.9 17.5

Table 1. Relative difference in percent (%) of the runtime of PFP
and BASE scheduler on Shanghai machine varying synthesizer
optimizations (+: on, -: off) relative to all optimizations on for one
and eight threads.

5. Evaluation

We implemented the algorithms presented in Section 2 and par-
allelized them using the Galois system.5 Figure 13 shows the
datasets we used for each application. The shortest-path application
uses atomic compare-and-set operations to update distances. The
currently distributed implementation uses abstract locks [19], but
compare-and-set operations are much faster for this application.

We modified the Galois system to support the scheduler speci-
fications and synthesis algorithm described in Section 4. To evalu-
ate our approach, we ran each algorithm with the following set of
schedulers.

• BASE: This is the default scheduler used by the Galois system.
It is a synthesized ChunkedFIFO with a chunk-size of 32. Each
chunk is a thread-local LIFO.

• FIFO, LIFO, RAND: These schedulers are synthesized from
the final rules FIFO, LIFO and Random. Application-specific
schedulers typically use one of these schedulers as their lowest-
level (final) scheduler.

• WS-L, WS-F: These schedulers are work-stealing with local
LIFOs and FIFOs respectively. These schedulers were ported
directly from the Fork-Join implementation in JSR166 and
should appear in Java JDK 7. WS-L is widely used in many
parallel systems.

• BS-L, BS-F: These schedulers use a bulk-synchronous strategy
with global LIFOs and FIFOs respectively. A barrier is used to
safely swap between queues concurrently.

• AS1, AS2: These schedulers are synthesized from the application-
specific specifications in Figure 8.

We ran our experiments on three architectures:

• Nehalem: a Sun Fire X2270 machine running Ubuntu Linux
8.04.4 LTS 64-bit. It contains two 4-core 2.93GHz Intel Xeon
X5570 (Nehalem) processors. The two CPUs share 24GB of
main memory. Each core has a 32 KB L1 cache and a unified
256KB L2 cache. Each processor has an 8MB L3 cache that is
shared among the cores.

• Shanghai: a machine also running Ubuntu Linux 8.04.4 LTS
64-bit. It contains four 4-core 2.7GHz AMD Opteron 8384
(Shanghai) processors. Each core has a 64KB L1 cache and
a 512KB L2 cache. Each processor has a 6MB L3 cache that
is shared among the cores.

• Niagara: a Sun T5440 machine running SunOS 5.10. It con-
tains four 8-core 1.4GHz Sun UltraSPARC T2 Plus (Niagara 2)
processors. Each processor has a 4MB L2 cache that is shared
among the cores.

5 Available at http://iss.ices.utexas.edu/galois

8 2011/2/24

GALOIS

• Java

• provides workset iterator

• tracks active nodes and neighborhoods

• records undo actions to roll back conflicting activities
(overlapping neighborhoods)

• like a coarse-grained STM

EVALUATION
BASE RAND LIFO FIFO WS-L WS-F BS-L BS-F AS2 AS1

Nehalem
DMR 12.88 14.80 11.45 13.09 11.51 13.27 12.76 13.17 15.56 11.62
DT 25.04 25.42 14.78
PFP 110.93 109.77 169.86 115.40 173.47 116.44 110.18 118.59 45.94
PTA 13.87 - - 12.58 - 12.74 20.26 12.84
SSSP - - - - - - - - 7.66 4.96

Shanghai
DMR 16.29 19.52 13.55 16.76 13.74 16.76 16.25 16.71 19.59 13.64
DT 43.40 43.55 27.86
PFP 237.04 210.57 320.24 237.17 314.53 234.13 216.50 217.67 74.26
PTA 19.99 - - 18.80 - 18.79 26.44 18.82
SSSP - - - - - - - - 11.08 9.53

Niagara
DMR 61.76 68.10 54.79 63.51 53.84 63.31 62.86 64.17 77.81 60.33
DT 178.21 179.00 149.42
PFP 787.05 734.27 1264.61 741.01 1297.71 775.04 720.20 827.07 342.41
PTA 59.17 - - 57.73 - 57.30 76.16 56.99
SSSP - - - - - - - - 33.84 23.35

Table 2. Runtimes of serial versions in seconds. In bold are the best serial times, the basis for the speedup numbers in Table 3. Entries with
- timed out. Blank entries indicate invalid or redundant combinations.

BASE RAND LIFO FIFO WS-L WS-F BS-L BS-F AS2 AS1
Nehalem (t ≤ 8)

DMR 5.70 4.82 0.95 3.81 4.35 5.13 2.64 3.53 2.01 6.15
DT 2.21 2.09 2.35
PFP 1.30 0.71 0.20 1.15 0.72 2.30 0.37 0.89 3.35
PTA 2.83 - - 3.53 - 2.05 2.37 3.77
SSSP - - - - - - - - 0.61 3.16

Shanghai (t ≤ 16)
DMR 7.85 3.43 0.95 3.74 6.94 7.53 1.91 3.83 2.32 10.45
DT 2.64 2.65 2.53
PFP 1.28 0.62 0.20 1.00 0.65 2.19 0.37 0.74 2.56
PTA 3.69 - - 3.63 - 3.08 3.25 5.03
SSSP - - - - - - - - 0.80 3.04

Niagara (t ≤ 32)
DMR 18.77 5.95 0.89 6.81 11.47 18.53 3.60 5.89 3.59 21.53
DT 5.43 5.48 3.29
PFP 2.30 1.25 0.32 2.84 2.18 4.46 0.80 2.13 5.92
PTA 4.20 - - 4.49 - 5.42 4.62 6.16
SSSP - - - - - - - - 0.50 2.33

Table 3. Speedup over serial versions. In bold are the best speedups for each (application, machine) pair. Entries with - timed out. Blank
entries indicate invalid or redundant combinations.

Figure 14. Relative number of aborted to total iterations for DMR on Shanghai.

10 2011/2/24

EVALUATION

BASE RAND LIFO FIFO WS-L WS-F BS-L BS-F AS2 AS1
Nehalem

DMR 12.88 14.80 11.45 13.09 11.51 13.27 12.76 13.17 15.56 11.62
DT 25.04 25.42 14.78
PFP 110.93 109.77 169.86 115.40 173.47 116.44 110.18 118.59 45.94
PTA 13.87 - - 12.58 - 12.74 20.26 12.84
SSSP - - - - - - - - 7.66 4.96

Shanghai
DMR 16.29 19.52 13.55 16.76 13.74 16.76 16.25 16.71 19.59 13.64
DT 43.40 43.55 27.86
PFP 237.04 210.57 320.24 237.17 314.53 234.13 216.50 217.67 74.26
PTA 19.99 - - 18.80 - 18.79 26.44 18.82
SSSP - - - - - - - - 11.08 9.53

Niagara
DMR 61.76 68.10 54.79 63.51 53.84 63.31 62.86 64.17 77.81 60.33
DT 178.21 179.00 149.42
PFP 787.05 734.27 1264.61 741.01 1297.71 775.04 720.20 827.07 342.41
PTA 59.17 - - 57.73 - 57.30 76.16 56.99
SSSP - - - - - - - - 33.84 23.35

Table 2. Runtimes of serial versions in seconds. In bold are the best serial times, the basis for the speedup numbers in Table 3. Entries with
- timed out. Blank entries indicate invalid or redundant combinations.

BASE RAND LIFO FIFO WS-L WS-F BS-L BS-F AS2 AS1
Nehalem (t ≤ 8)

DMR 5.70 4.82 0.95 3.81 4.35 5.13 2.64 3.53 2.01 6.15
DT 2.21 2.09 2.35
PFP 1.30 0.71 0.20 1.15 0.72 2.30 0.37 0.89 3.35
PTA 2.83 - - 3.53 - 2.05 2.37 3.77
SSSP - - - - - - - - 0.61 3.16

Shanghai (t ≤ 16)
DMR 7.85 3.43 0.95 3.74 6.94 7.53 1.91 3.83 2.32 10.45
DT 2.64 2.65 2.53
PFP 1.28 0.62 0.20 1.00 0.65 2.19 0.37 0.74 2.56
PTA 3.69 - - 3.63 - 3.08 3.25 5.03
SSSP - - - - - - - - 0.80 3.04

Niagara (t ≤ 32)
DMR 18.77 5.95 0.89 6.81 11.47 18.53 3.60 5.89 3.59 21.53
DT 5.43 5.48 3.29
PFP 2.30 1.25 0.32 2.84 2.18 4.46 0.80 2.13 5.92
PTA 4.20 - - 4.49 - 5.42 4.62 6.16
SSSP - - - - - - - - 0.50 2.33

Table 3. Speedup over serial versions. In bold are the best speedups for each (application, machine) pair. Entries with - timed out. Blank
entries indicate invalid or redundant combinations.

Figure 14. Relative number of aborted to total iterations for DMR on Shanghai.

10 2011/2/24

SCHEDULING THREADS FOR
CONSTRUCTIVE CACHE

SHARING ON CMPS
Shimin Chen et al.

CMU & Intel Pittsburgh

MERGESORT

P4 P5 P6 P7 P8

Parallel Depth First:

Work Stealing:

L2 cache miss L2 cache hit Mixed Not yet executed

P1 P2 P3 P4

P1

P5 P6 P7 P8

P2 P3

Parallel Depth First:

Work Stealing:

L2 cache miss L2 cache hit Mixed

(a) Part way through (b) Completed

Figure 1: Scheduling parallel Mergesort using WS and PDF: Picturing the misses. Each horizontal box is a
sorted array of records, where at each level, pairs of arrays from the previous level are merged until all the
records are sorted. The L2 hits and misses are shown for sorting an array of CP bytes, where CP is the size
of the shared L2 cache, using 8 cores.

Philbin et al. [30] studied the possibility of reducing cache
misses for sequential programs through intelligent schedul-
ing of fine-grained threads. Their approach relies on memory
access hints in the program to identify threads that should
execute in close temporal proximity in order to promote
cache reuse. Although the scheduler is not directly appli-
cable to parallel scheduling, the approach may be a useful
pre-processing step for the PDF scheduler, which relies on
the program having a cache-friendly sequential schedule.

3. WORK STEALING AND PARALLEL
DEPTH FIRST SCHEDULERS

In this paper, we compare the performance of two greedy
schedulers proposed for fine-grained multithreaded programs:
Work Stealing (WS) and Parallel Depth First (PDF).

Threads and the dependences among them are often de-
scribed as a computation DAG. Each node in the DAG rep-
resents a task, which is a thread or portion of a thread that
has no internal dependences to/from other nodes. A weight
associated with each node represents the task’s runtime. We
refer to the longest (weighted) path in the DAG as the depth
D. A node or task is ready if all its ancestors in the DAG
have completed. The DAG unfolds as the computation pro-
ceeds, and the job of the scheduler is to assign nodes of the
DAG to processor cores over time so that no node is assigned
at a time before it is ready. In a greedy scheduler, a ready
task remains unscheduled only if all processors are already
busy executing other tasks.

Work Stealing (WS) is a popular greedy thread scheduling
algorithm for multithreaded programs, with proven theoret-
ical properties with regards to memory and cache usage [10,
8, 1]. The policy maintains a work queue for each processor
(actually a double-ended queue that allows elements to be
inserted on one end of the queue, the top, but taken from
either end). When forking a new thread, this new thread is
placed on the top of the local queue. When a task completes
on a processor, the processor looks for a ready-to-execute
task by first looking on the top of the local queue. If it finds
a task, it takes the task off the queue and runs it. If the
local queue is empty it checks the work queues of the other
processors and steals a task from the bottom of the first

non-empty queue it finds. WS is an attractive scheduling
policy because when there is plenty of parallelism, stealing
is quite rare and, because the tasks in a queue are related,
there is good affinity among the tasks executed by any one
processor. However, WS is not designed for constructive
cache sharing, because the processors tend to have disjoint
working sets.

Parallel Depth First (PDF) [6] is another greedy schedul-
ing policy, based on the following insight. Important (se-
quential) programs have already been highly tuned to get
good cache performance on a single core, by maintaining
small working sets, getting good spatial and temporal reuse,
etc. In PDF, when a core completes a task, it is assigned
the ready-to-execute task that the sequential program would
have executed the earliest.1 As a result, PDF tends to co-
schedule tasks in a way that tracks in some sense the se-
quential execution. Thus, for programs with good sequen-
tial cache performance, PDF provides good parallel cache
performance (i.e., constructive cache sharing), as evidenced
by the following theorem:

Theorem 3.1. [5] Let M1 be the number of misses when
executing an arbitrary computation DAG G sequentially with
an (ideal) cache of size C. Then a parallel execution of G
using PDF on P cores with a shared (ideal) cache of size at
least C + P · D incurs at most M1 misses, where D is the
depth of G.

This compares favorably to the comparable upper bound for
WS, where the cache size must be at least C ·P to guarantee
roughly M1 misses [8, 1]. However, these analytical guar-
antees leave unanswered a number of important research
questions. For example, what is the relative performance of
the two schedulers on real benchmarks? How does the size,
CP , of the on-chip cache effect the performance, particularly
when CP is larger than C + P ·D? In this paper, we address
these questions through experimental studies, where CP is
determined by technology factors, and increases roughly lin-
early with P in our default configurations.

An Example. Figure 1 depicts pictorially the L2 cache

1Note that [6, 7, 28] show how to do this on-line without
executing the sequential program.

DISCUSSION

• nice lightweight specification language for workset iterator

• brings research on parallel algorithms & data structures
closer to programming reality

• looks amenable to a C++ template implementation

• I would like to see a non-Java evaluation

• maybe someone should repeat the measurements…

GCD

dispatch_queue_create

Creates a new dispatch queue to which blocks can be submitted.

dispatch_queue_t dispatch_queue_create(
 const char *label,
 dispatch_queue_attr_t attr);

attr	
 Currently unused; pass NULL.

