
A history lesson Fault Types Analysis Results Bibliography

Faults in Linux: Ten years later
A case for reproducible scientific results

Nicolas Palix et. al

ASPLOS 2011



A history lesson Fault Types Analysis Results Bibliography

The story begins in 2001...

Chou et al.: An empirical study of operating system
bugs [CYC+01]

Static analysis of bug evolution in Linux versions 1.0 - 2.4.1

Often condensed to the most important finding: “Drivers are
the one major source of bugs in operating systems”, which
becomes the scientific fundament for a huge body of OS
research:

Mike Swift: Nooks [SABL06], Microdrivers [GRB+08],
Carbon [KRS09]
Tanenbaum: Minix 3 [HBG+06]
UNSW: Dingo [RCKH09] + Termite [RCK+09]
Gun Sirer: Reference Validation [WRW+08]
TUD, UNSW and more: user-level drivers [LCFD+05], DDE
UKA: DD/OS [LUSG04]
Microsoft: Singularity + Signed Drivers [LH10]

But it’s now been 10 years. Have things changed?



A history lesson Fault Types Analysis Results Bibliography

The story begins in 2001...

Chou et al.: An empirical study of operating system
bugs [CYC+01]

Static analysis of bug evolution in Linux versions 1.0 - 2.4.1

Often condensed to the most important finding: “Drivers are
the one major source of bugs in operating systems”, which
becomes the scientific fundament for a huge body of OS
research:

Mike Swift: Nooks [SABL06], Microdrivers [GRB+08],
Carbon [KRS09]
Tanenbaum: Minix 3 [HBG+06]
UNSW: Dingo [RCKH09] + Termite [RCK+09]
Gun Sirer: Reference Validation [WRW+08]
TUD, UNSW and more: user-level drivers [LCFD+05], DDE
UKA: DD/OS [LUSG04]
Microsoft: Singularity + Signed Drivers [LH10]

But it’s now been 10 years. Have things changed?



A history lesson Fault Types Analysis Results Bibliography

Block

To avoid deadlock, do not call blocking functions with interrupts
disabled or a spinlock held.

// A) Call schedule() with interrupts disabled

asm volatile ("cli");

schedule();

asm volatile ("sti");

// B) Call blocking function with lock held

// (BlockLock)

DEFINE_SPINLOCK(l);

unsigned long flags;

spin_lock_irqsave(&l, flags);

..

void *foo = kmalloc(some_size, GFP_KERNEL);



A history lesson Fault Types Analysis Results Bibliography

NULL / Free

Check potentially NULL pointers returned from routines.

my_data_struct *foo =

kmalloc(10 * sizeof(*foo), GFP_KERNEL);

foo->some_element = 23;

Do not use freed memory

free(foo);

foo->some_element = 23;



A history lesson Fault Types Analysis Results Bibliography

Var

Do not allocate large stack variables (>1K) on the fixed-size kernel
stack.

void some_function()

{

char array[1 << 12];

char array2[MY_MACRO(x,y)]; // not found

...

}



A history lesson Fault Types Analysis Results Bibliography

Inull

Do not make inconsistent assumptions about whether a pointer is
NULL.

void foo(char *bar)

{

if (!bar) { // IsNull

printk("Error: %s\n", *bar);

} else {

printk("Success: %s\n", *bar);

if (!bar) { // NullRef

panic();

}

}

}



A history lesson Fault Types Analysis Results Bibliography

LockIntr

Release acquired locks; do not double-acquire locks. Restore
disabled interrupts.

void foo() {

DEFINE_SPINLOCK(l1); DEFINE_SPINLOCK(l2);

unsigned long flags1, flags2;

spin_lock_irqsave(&l1, flags1);

spin_lock_irqsave(&l2, flags2);

// double acquire:

spin_lock_irqsave(&l1, flags1);

..

spin_unlock_irqrestore(&l2, flags2);

// unrestored interrupts for l1/flags1

// + unreleased lock l1

}



A history lesson Fault Types Analysis Results Bibliography

Range

Always check bounds of array indices and loop bounds derived
from user data.

int index = -1;

int n = copy_from_user(&index, userptr,

sizeof(index));

if (!n) {

kernel_data[index] = 0x0815;

}



A history lesson Fault Types Analysis Results Bibliography

Size

Allocate enough memory to hold the type for which you are
allocating.

typedef int myData;

typedef long long yourData;

yourData *ptr = kmalloc(sizeof(myData));



A history lesson Fault Types Analysis Results Bibliography

Lines of Code



A history lesson Fault Types Analysis Results Bibliography

Lines of Code



A history lesson Fault Types Analysis Results Bibliography

Fault candidates (notes) over time



A history lesson Fault Types Analysis Results Bibliography

Faults per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Faults per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Faults per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Fault rate per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Fault rate per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Fault rate per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Faults over time (total)



A history lesson Fault Types Analysis Results Bibliography

Faults over time (by type)



A history lesson Fault Types Analysis Results Bibliography

Lifetime of a fault



A history lesson Fault Types Analysis Results Bibliography

Lifetime of a fault



A history lesson Fault Types Analysis Results Bibliography

Function size vs. fault rate



A history lesson Fault Types Analysis Results Bibliography

Function size vs. fault rate



A history lesson Fault Types Analysis Results Bibliography

Conclusion

Drivers are not the single-most important source of faults
anymore.

Claim: all the research into driver safety has paid off.
Counter-claim: adding shiny new CPU architectures is now
more attractive to would-be kernel programmers and reviewing
new arch code is much harder anyway. (Plus: Chou in 2001
only looked at x86 code).

Static analysis has come a long way and is pretty helpful.

SA fails for state-of-the-art faults, e.g., data races and
deadlocks (the authors only use heuristics to prevent DL).



A history lesson Fault Types Analysis Results Bibliography

Crying for help

...Because Chou et al.s fault finding tool and checkers were not released,
and their results were released on a local web site but are no longer
available, it is impossible to exactly reproduce their results on recent
versions of the Linux kernel...

In laboratory sciences there is a notion of experimental protocol, giving
all of the information required to reproduce an experiment...

...Chou et al. focus only on x86 code, finding that 70% of the Linux
2.4.1 code is devoted to drivers. Nevertheless, we do not know which
drivers, file systems, etc. were included...

...Results from Chou et al.s checkers were available at a web site
interface to a database, but Chou has informed us that this database is
no longer available. Thus, it is not possible to determine the precise
reasons for the observed differences...



A history lesson Fault Types Analysis Results Bibliography

A Chou, J Yang, B Chelf, S Hallem, and D Engler.

An empirical study of operating system bugs.
In SOSP 01 ACM Symposium on Operating System Principles, pages 78–81. ACM Press, 2001.

Vinod Ganapathy, Matthew J Renzelmann, Arini Balakrishnan, Michael M Swift, and Somesh Jha.

The design and implementation of microdrivers.
ACM SIGARCH Computer Architecture News, 36(1):168–178, 2008.

Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S Tanenbaum.

MINIX 3: a highly reliable, self-repairing operating system.
SIGOPS Oper Syst Rev, 40(3):80–89, 2006.

Asim Kadav, Matthew J Renzelmann, and Michael M Swift.

Tolerating hardware device failures in software.
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles SOSP 09, page 59,
2009.

Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale, Stefan Götz, Charles Gray, Luke Macpherson, Daniel Potts,

Yue-Ting Shen, Kevin Elphinstone, and Gernot Heiser.
User-Level Device Drivers: Achieved Performance.
Journal of Computer Science and Technology, 20(5):654–664, 2005.

J Larus and G Hunt.

The Singularity system.
Communications of the ACM, 53(8):72–79, 2010.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz.

Unmodified device driver reuse and improved system dependability via virtual machines.
In Symposium A Quarterly Journal In Modern Foreign Literatures, number December, pages 17–30.
USENIX Association, 2004.



A history lesson Fault Types Analysis Results Bibliography

Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser.

Automatic device driver synthesis with termite.
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles SOSP 09, page 73,
2009.

Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser.

Dingo : Taming Device Drivers.
Analysis, pages 275–288, 2009.

Michael M Swift, Muthukaruppan Annamalai, Brian N Bershad, and Henry M Levy.

Recovering device drivers.
ACM Transactions on Computer Systems, 24(4):333–360, 2006.

Dan Williams, Patrick Reynolds, Kevin Walsh, Emin G, and Fred B Schneider.

Device Driver Safety Through a Reference Validation Mechanism.
Symposium A Quarterly Journal In Modern Foreign Literatures, pages 241–254, 2008.


	A history lesson
	Fault Types
	Analysis Results
	Bibliography

