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The story begins in 2001...

Chou et al.: An empirical study of operating system
bugs [CYC+01]

Static analysis of bug evolution in Linux versions 1.0 - 2.4.1

Often condensed to the most important finding: “Drivers are
the one major source of bugs in operating systems”, which
becomes the scientific fundament for a huge body of OS
research:

Mike Swift: Nooks [SABL06], Microdrivers [GRB+08],
Carbon [KRS09]
Tanenbaum: Minix 3 [HBG+06]
UNSW: Dingo [RCKH09] + Termite [RCK+09]
Gun Sirer: Reference Validation [WRW+08]
TUD, UNSW and more: user-level drivers [LCFD+05], DDE
UKA: DD/OS [LUSG04]
Microsoft: Singularity + Signed Drivers [LH10]

But it’s now been 10 years. Have things changed?
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Block

To avoid deadlock, do not call blocking functions with interrupts
disabled or a spinlock held.

// A) Call schedule() with interrupts disabled

asm volatile ("cli");

schedule();

asm volatile ("sti");

// B) Call blocking function with lock held

// (BlockLock)

DEFINE_SPINLOCK(l);

unsigned long flags;

spin_lock_irqsave(&l, flags);

..

void *foo = kmalloc(some_size, GFP_KERNEL);
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NULL / Free

Check potentially NULL pointers returned from routines.

my_data_struct *foo =

kmalloc(10 * sizeof(*foo), GFP_KERNEL);

foo->some_element = 23;

Do not use freed memory

free(foo);

foo->some_element = 23;
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Var

Do not allocate large stack variables (>1K) on the fixed-size kernel
stack.

void some_function()

{

char array[1 << 12];

char array2[MY_MACRO(x,y)]; // not found

...

}
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Inull

Do not make inconsistent assumptions about whether a pointer is
NULL.

void foo(char *bar)

{

if (!bar) { // IsNull

printk("Error: %s\n", *bar);

} else {

printk("Success: %s\n", *bar);

if (!bar) { // NullRef

panic();

}

}

}
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LockIntr

Release acquired locks; do not double-acquire locks. Restore
disabled interrupts.

void foo() {

DEFINE_SPINLOCK(l1); DEFINE_SPINLOCK(l2);

unsigned long flags1, flags2;

spin_lock_irqsave(&l1, flags1);

spin_lock_irqsave(&l2, flags2);

// double acquire:

spin_lock_irqsave(&l1, flags1);

..

spin_unlock_irqrestore(&l2, flags2);

// unrestored interrupts for l1/flags1

// + unreleased lock l1

}
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Range

Always check bounds of array indices and loop bounds derived
from user data.

int index = -1;

int n = copy_from_user(&index, userptr,

sizeof(index));

if (!n) {

kernel_data[index] = 0x0815;

}
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Size

Allocate enough memory to hold the type for which you are
allocating.

typedef int myData;

typedef long long yourData;

yourData *ptr = kmalloc(sizeof(myData));
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Lines of Code
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Lines of Code
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Fault candidates (notes) over time
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Faults per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Faults per subdirectory
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Faults per subdirectory
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Fault rate per subdirectory
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Fault rate per subdirectory
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Fault rate per subdirectory



A history lesson Fault Types Analysis Results Bibliography

Faults over time (total)
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Faults over time (by type)
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Lifetime of a fault
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Lifetime of a fault
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Function size vs. fault rate
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Function size vs. fault rate
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Conclusion

Drivers are not the single-most important source of faults
anymore.

Claim: all the research into driver safety has paid off.
Counter-claim: adding shiny new CPU architectures is now
more attractive to would-be kernel programmers and reviewing
new arch code is much harder anyway. (Plus: Chou in 2001
only looked at x86 code).

Static analysis has come a long way and is pretty helpful.

SA fails for state-of-the-art faults, e.g., data races and
deadlocks (the authors only use heuristics to prevent DL).
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Crying for help

...Because Chou et al.s fault finding tool and checkers were not released,
and their results were released on a local web site but are no longer
available, it is impossible to exactly reproduce their results on recent
versions of the Linux kernel...

In laboratory sciences there is a notion of experimental protocol, giving
all of the information required to reproduce an experiment...

...Chou et al. focus only on x86 code, finding that 70% of the Linux
2.4.1 code is devoted to drivers. Nevertheless, we do not know which
drivers, file systems, etc. were included...

...Results from Chou et al.s checkers were available at a web site
interface to a database, but Chou has informed us that this database is
no longer available. Thus, it is not possible to determine the precise
reasons for the observed differences...
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Yue-Ting Shen, Kevin Elphinstone, and Gernot Heiser.
User-Level Device Drivers: Achieved Performance.
Journal of Computer Science and Technology, 20(5):654–664, 2005.

J Larus and G Hunt.

The Singularity system.
Communications of the ACM, 53(8):72–79, 2010.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz.
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