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PROBLEM

• memory and CPU time treated as first-class resources

• mobile devices are „the dominant end-user computing 
platform of the decade“

• energy is the new speed

• energy is not controllable at all

• (at least not like memory and CPU time)



MECHANISM

Reserve

• right to use a given quantity of a resource

• when the resource is used, the reserve is consumed

Tap

• conduit between a source and a sink reserve

• transfers specific rate of resource allowance



QUOTAS

energy isolation, subdivision and delegation

Figure 1. A 15 kJ battery, or root reserve, connected to a reserve
via a tap. The battery is protected from being misused by the web
browser. The web browser draws energy from an isolated reserve
which is fed by a 750 mW tap.

3.4 Resource Consumption Graph
Reserves and taps form a directed graph of resource con-
sumption rights. The root of the graph is a reserve represent-
ing the system battery; all other reserves are a subdivision
of this root reserve. Figure 1 shows a simple example of a
web browser whose consumption is rate limited using a tap.
The tap guarantees that even if the browser is aggressively
using energy the battery will last at least 5 hours (15,000 J at
0.750 J/s is about 5.6 hours).

3.5 Access Control & Security
Any thread can create and share reserves or taps to subdivide
and delegate its resources. This ability introduces a problem
of fine-grained access control. To solve this, reserves and
taps are protected by a security label, like all other kernel
objects. The label describes the privileges needed to observe,
modify, and use the reserve or tap.

Using resources from a reserve requires both observe and
modify privileges: observe because failed consumption indi-
cates the reserve level (zero) and modify for when consump-
tion succeeds. Since a tap actively moves resources between
a source and sink reserve, it needs privileges to observe and
modify both reserve levels; to aid with this, taps can have
privileges embedded in them.

4. Cinder on the HTC Dream
Controlling energy requires measuring or estimating its con-
sumption. This section describes Cinder’s implementation
and its energy model. The Cinder kernel runs on AMD64,
i386, and ARM architectures. All source code is freely avail-
able under open-source licenses. Our principal experimental
platform is the HTC Dream (Google G1), a modern smart-
phone based on the Qualcomm MSM7201A chipset.

4.1 Energy accounting
Energy accounting on the HTC Dream is difficult due to the
closed nature of its hardware. It has a two-processor design,
as shown in Figure 2. The operating system and applications
run on an ARM11 processor. A secure, closed ARM9 co-
processor manages the most energy hungry, dynamic, and
informative components (e.g. GPS, radio, and battery sen-
sors). The ARM9, for example, exposes the battery level as
an integer from 0 to 100.

Recent work on processors has shown that fine-grained
performance counters can enable accurate energy estimates
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Figure 2. The two ARM cores in the MSM7201A chipset. Cinder
runs on the ARM11, whereas the ARM9 controls access to sensitive
hardware including the radio and GPS. The two communicate via
shared memory and interrupt lines.

within a few percent [Economou 2006; Snowdon 2009].
Without access to such state in the HTC Dream, however,
Cinder relies on the simpler well-tested technique of build-
ing a model from offline-measurements of device power
states in a controlled setting [Flinn 1999b; Fonseca 2008;
Zeng 2002]. Phones today use this approach, and so Cinder
has equivalent accuracy to commodity systems.

4.2 Power Model
Our energy model uses device states and their duration to
estimate energy consumption. We measured the Dream’s
energy consumption during various states and operations.
All measurements were taken using an Agilent Technolo-
gies E3644A, a DC power supply with a current sense re-
sistor that can be sampled remotely via an RS-232 interface.
We sampled both voltage and current approximately every
200 ms, and aggregated our results from this data.

While idling in Cinder, the Dream uses about 699 mW
and another 555 mW when the backlight is on. Spinning the
CPU increases consumption by 137 mW. Memory-intensive
instruction streams increase CPU power draw by 13% over
a simple arithmetic loop. However, the HTC Dream does
not have hardware support to estimate what percentage of
instructions are memory accesses. The ARM processor also
lacks a floating point unit, leaving us with only integer,
control flow, and memory instructions. For these reasons,
our CPU model currently does not take instruction mix into
account and assumes the worst case power draw (all memory
intensive operations).

4.3 Peripheral Power
The baseline cost of activating the radio is exceptionally
high: small isolated transfers are about 1000 times more ex-
pensive, per byte, than large transfers. Figure 3 demonstrates
the cost of activating the radio and sending UDP packets
to an echo server that returns the same contents. Results
demonstrate that the overhead involved dominates the total
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Figure 3. Radio data path power consumption for 10 second
flows across six different packet rates and three packet sizes. Short
flows are dominated by the 9.5 J baseline cost shown in Figure 4.
For this simple static test, data rate has only a small effect on the
total energy consumption. The average cost is 14.3 J (minimum:
10.5, maximum: 17.6).
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Figure 4. Cost of transitioning from the lowest radio power state
to active. One UDP packet is transmitted approximately every
40 seconds to enable the radio. The device fully sleeps after 20 sec-
onds, but the average plateau consumes an additional 9.5 J of en-
ergy over baseline (minimum 8.8 J, maximum 11.9 J). Power con-
sumption for a stationary device can often be predicted with rea-
sonable accuracy, but outliers, such as the penultimate transition,
occur unpredictably.

power cost for flows lasting less than 10 seconds in duration,
regardless of the bitrate.

Figure 4 shows this activation cost. An application pow-
ers up the radio by sending a single 1-byte UDP packet. The
secure ARM9 automatically returns to a low power mode
after 20 seconds of inactivity. Because the ARM9 is closed,
Cinder cannot change this inactivity timeout.

With this workload, it costs 9.5 joules to send a single
byte! One lesson from this is that coordinating applications
to amortize energy start-up costs could greatly improve en-
ergy efficiency. In §5.5 we demonstrate how Cinder can use
reserves and taps for exactly this purpose.

4.4 Mobility & Power Model Improvements
Cinder’s aim is to leverage advances in energy accounting
(see §8.2) to allow users and applications to provision and
manage their limited budgets. Accurate energy accounting
is an orthogonal and active area of research. Cinder is adapt-
able and can take advantage of new accounting techniques
or information exposed by device manufacturers.

// Create a reserve

object_id_t res_id;

res_id = reserve_create(container_id, res_label);

objref res = OBJREF(container_id, res_id);

// Create a tap and connect it between

// the battery and the new reserve

object_id_t tap_id;

tap_id = tap_create(container_id, root_reserve,

res, tap_label);

objref tap = OBJREF(container_id, tap_id);

// Limit the child to 1 mW

tap_set_rate(tap, TAP_TYPE_CONST, 1);

if (fork() == 0) {

// child process: switch to new reserve before exec

self_set_active_reserve(res);

execv(args[0], args);

}

Figure 5. energywrap excerpt without error handling.

5. Applications
To gain experience with Cinder’s abstractions, we devel-
oped applications using reserves and taps. This section de-
scribes these applications, including a command-line utility
that augments existing applications with energy policies, an
energy constrained web browser that further isolates itself
from its browser plugins, and a task manager application that
limits energy consumption of background applications.

5.1 energywrap

Taking advantage of the composability of Cinder’s resource
graph, the energywrap utility allows any application to be
sandboxed even if it is buggy or malicious. energywrap
takes a rate limit and a path to an application binary. The
utility creates a new reserve and attaches it to the reserve in
which energywrap started by a tap with the rate given as
input. After forking, energywrap begins drawing resources
from the newly allocated reserve rather than the original re-
serve of the parent process and executes the specified pro-
gram. This allows even energy-unaware applications to be
augmented with energy policies.

The sandboxing policy provided by energywrap is im-
plemented in about 100 lines of C++. An excerpt is shown
in Figure 5. HiStar provides a wrap utility designed to iso-
late applications with respect to privileges and storage re-
sources. Coupling this utility with energywrap allows any
application or user to provide a virtualized environment to
any thread or application. Section 6.1 evaluates the effec-
tiveness of energy sandboxing and isolation.

energywrap has proved useful in implementing policies
while designing and testing Cinder, particularly for legacy
applications that have no notion of reserves or taps. Since
energywrap runs an arbitrary executable, it is possible to
use energywrap to wrap itself or shell scripts, which may
invoke energywrap with other scripts or applications. This



LIMIT ENERGY HOARDING

Figure 6. (a) A web browser configured to run for at least 6 hours
on a 15 kJ battery. The web browser further ensures that its plugin
cannot use more than 10% of its energy. (b) Adding 0.1x backward
proportional taps promotes sharing of excess energy unused by the
browser and plugin.

allows a wide class of ad hoc policies to be scripted using
standard shell scripting or on-the-fly at the command line.

5.2 Fine-grained Control
Mobile browsers now support plugins like Adobe Flash [Fla
2009], and we can expect more plugins and extensions to
follow. On a device where resources are precious, it is im-
portant to have tight control over these plugins.

In Cinder, an application may be given some fixed rate or
quota of energy using reserves and taps. A web browser may,
for example, want to also run a plugin while ensuring that it
cannot starve other plugins or even the browser itself. Shown
in Figure 6a, the browser can allocate a separate reserve for
the plugin and connect it to its own energy via a low rate tap.

Often a single plugin (e.g. Flash) may be handling a
number of pages or requests all in a single process. To scale
the energy given to the plugin with the number of pages
it is handling, the browser can add a tap per page. When
a particular page is no longer being handled (e.g. the user
navigates away) the taps associated with that page can be
automatically garbage collected, effectively revoking those
power sources.

Cinder includes a simple graphical web browser based
on links2 that runs in Xorg or standalone against the frame-
buffer. It is augmented with an extension running in a sepa-
rate process, whose energy usage is subdivided and isolated
from the browser. The browser can send requests to the ex-
tension process (for ad blocking, etc.), and if the extension is
unresponsive due to lack of energy the browser can display
the unaugmented page.

5.2.1 Reclaiming Unused Resources
Consider a problem common to many applications: a web
browser would like to allow a plugin to consume resources
quickly while making sure it shares unused resources. The
plugin may fully utilize peripherals and drive the device at
peak power, requiring a reserve fed with a high rate tap. This
raises a problem: if the plugin draws less than its tap rate, the

reserve will slowly fill with energy that no other application
can use.

To solve this problem, an application can use a propor-
tional tap. These taps transfer a fraction of their source re-
serve’s resource per unit time, rather than a fixed quantity.
Figure 6b shows the fix to the browser; the plugin reserve
on the right is limited to a maximum average power draw of
70 mW. The backwards proportional tap means the plugin
reserve can store up to 10 s of this power (700 mJ) for bursty
operations. Once the reserve reaches 700 mJ, the backwards
proportional tap drains the reserve as quickly as the forward
constant tap fills it. Similarly, the browser’s reserve can ac-
cumulate up to 7000 mJ while being forced to share unused
energy with other applications.

5.2.2 Hoarding and Resource Decay
Backward proportional taps alone are insufficient for pre-
venting malicious applications from hoarding. Threads can
sidestep taxation by creating a new reserve with no propor-
tional taps and periodically transferring resources to it. The
application could, over time, accumulate energy equal to the
battery and starve the rest of the system.

To prevent this, Cinder could provide a reserve clone()

rather than reserve create(). This call would take a re-
serve that an application has access to and create a new
reserve taking care to duplicate any backward proportional
taps that the application does not have the permission to re-
move. Additionally, Cinder would need to disallow system
calls that transfer resources from a fast-draining reserve to a
more slow-draining reserve unless the caller has proper per-
mission (that is, the permission to remove all the backward
taps from the source reserve that do not have a correspond-
ing backward tap at the target reserve).

These constraints eliminate hoarding, but complicate ap-
plications that are not malicious. Therefore, in practice, Cin-
der prevents hoarding by imposing a global, long-term decay
of resources across all reserves; every reserve has an implicit
proportional backward tap to the battery.

By default, Cinder is configured to leak 50% of reserve
resources after a period of 10 minutes. This long (but short
compared to the period between battery recharges) half-life
allows applications to accumulate and store energy for sig-
nificant periods, and permits the system to make large-scale
long-term hoarding impossible. ESX Server [Waldspurger
2002] successfully uses a similar “idle memory tax” to miti-
gate hoarding of unused memory between virtual machines.

Further experience with these abstractions is needed to
understand whether the trade-offs associated with the more
fundamental solution for hoarding are worth making.

5.3 Energy-Aware Applications
Using Cinder, developers can gain fine-grained control of
resources within their applications, providing a better expe-
rience to end users. This includes adaptive policies for pro-
grams where partial or degraded results are still useful, and



TIDBITS

• applications can inspect their reserve and adapt

• different reserves for foreground and background operation

• executing a service depletes the caller’s reserve

• multiple caller’s can pool reserves to pay device startup cost

• netd short-sales reserve when receiving



EVALUATION

Figure 8. The mail checker and RSS feed downloader are con-
strained to use up to 37.5 mW apiece. When making network re-
quests, netd explicitly transfers energy from their reserves into its
own reserve. Once the requesting application’s reserve, combined
with the netd reserve, has enough energy, the radio will turn on.
This simple policy helps synchronize applications’ network access,
reducing active radio time and saving energy.

life, as the process is trusted not to hoard energy and, by
construction, only stores enough energy to activate the radio
before being expended.

Cinder estimates the cost of radio access by tracking
when network transmit and receive events occur. For in-
stance, if the radio has been idle for 20 seconds or more,
threads wishing to use the network must contribute enough
energy to turn the radio on and maintain the active power
state until it idles again (§4). Once the radio is on, back-to-
back actions are cheaper than ones with more delay between
them because they extend the active period (delay the next
idle period) less significantly.

For example, if the radio has been active for one second,
it will automatically idle again 19 seconds later, so transmit-
ting now only extends the active period by 1 second. How-
ever, if the radio is active but no packets have been sent or
received for 15 seconds, transmitting now will extend the
active period by an additional 15 seconds – the same action
becomes much more expensive.

This leaves the problem of how to charge for incoming
packets since energy has already been spent to receive them.
To facilitate this, threads can debit their own reserves up to
or into debt even if the cost can only be determined after-
the-fact. This allows user space accounting; for example, in
this case the receiving thread under the control of netd’s send
gate debits its own reserve when packets are delivered to it.

Section 6.4 evaluates the effectiveness of netd in aiding
cooperation between applications to increase the responsive-
ness of services while retaining their energy budget.

6. Evaluation
Using the applications described in §5, we evaluate whether
Cinder meets the requirements described in Sections 1 and
2: can it control energy, provide visibility into the energy of a
running system, and provide subdivision, delegation, as well
as isolation? Furthermore, we evaluate whether Cinder can
facilitate dynamic energy-aware applications and improve
a system’s energy efficiency by managing complex devices
with non-linear power consumption.
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Figure 9. Stacked graph of Cinder’s CPU energy accounting
estimates during isolated process execution. Process A’s energy
consumption is isolated from other processes’ energy use despite
B’s periodic spawning of child processes (B1 and B2). The sum
of the estimated power of the individual processes closely matches
the measured true power consumption of the CPU of about 139
mW during this experiment.

All experiments exception the image viewer of §6.2 use
Cinder running on an HTC Dream. The image viewer evalu-
ation was performed on a Lenovo T60p laptop. To measure
power draw, we connect the Dream to the Agilent E3644A
DC power supply. To monitor reserve energy levels we use
the Dream’s serial port output.

6.1 Isolation, Subdivision, and Delegation: Buggy and
Malicious Applications

We first show how a simple use case – protecting the system
from a buggy or malicious energy hog – requires isolation,
subdivision, and delegation. Figure 9 shows a stacked plot
of Cinder’s energy accounting estimates of two processes,
A and B. In this experiment, the system is configured to
evenly subdivide and delegate enough power to fully utilize
the CPU between the two processes (about 68 mW to each
process since running the CPU costs 137 mW).

Process B spawns a new child process at about 5 seconds
(B1) and again at about 10 seconds (B2). Without reserves
and taps, these additional processes would cause A to receive
a smaller share of the CPU. Here, however, Process A is
isolated from these forks and still consumes about 50% of
the CPU (and power share).

This experiment highlights the fine-grained nature of Cin-
der’s control: not only is A isolated from B, but B is also able
to protect itself from its own children, B1 and B2. Rather
than have its children draw from B’s own reserve, B cre-
ates two new reserves subdividing and delegating its power
to each using two taps. Each of the taps has one-quarter the
power of B’s tap, such that after spawning both they are us-
ing half of B’s power. Figure 9 shows that both A and B’s
policies are composed and enforced in the expected way.

6.2 Subdivision and Delegation: Image Viewer
To demonstrate the practicality of energy-aware applications
in Cinder, we used our image viewer described in §5.3,



ADAPTIVE APPLICATION

 0

 50000

 100000

 150000

 200000

 0  500  1000  1500  2000  2500
 0
 100
 200
 300
 400
 500
 600
 700
 800

R
e

se
rv

e
 L

e
ve

l (
µ

J)

T
ra

n
sf

e
r 

ra
te

 (
K

iB
)

Time (seconds)

Reserve Level without Application Scaling

Figure 10. The same image viewer application as in §5.3, but
without dynamic scaling of image quality. The line represents
energy in the downloader’s reserve while the bars represent the
amount of data downloaded per image.
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Figure 11. Image viewer with energy-aware scaling of image
quality enabled. As energy becomes scarce, quality is lowered and
less data is downloaded per image. The experiment takes less than
one-fifth the time to complete within the energy budget versus the
non-adaptive viewer due to adaptation to reduced available energy.

tested with and without energy-aware image scaling. The
tests mimic a user loading a page of images, pausing to view
the images, and then requesting more. We tracked the energy
reserve levels, the amount of data transferred over the net-
work interface, the download time for each batch of images,
and the average bytes transferred per image over time. Each
image was of similar size (⇠2.7 MiB) and each batch con-
tained the same number of images. Pausing between batches
allowed the energy reserve for the downloader thread to fill
at a constant rate. The first pause lasted for 40 seconds, with
each successive pause being 5 seconds shorter than the pre-
vious pause, so a smaller amount of energy built up in the
reserve after each batch was downloaded.

When image download sizes are not scaled back as in
Figure 10, the amount of data transferred stays constant per
batch. With each successive batch, the amount of energy in
the reserve at the start of the batch decreases since the user
pauses more briefly after downloading. Thus the reserve runs
out soon after the start of each batch in this case, with the
image transfers stalling until enough energy is available for
the thread to continue, causing a long run time.

When image requests use energy-aware scaling as in Fig-
ure 11, the quality of images and bytes transferred for each
image drops as the energy level dips, and the transfer time
per image decreases with the smaller image data. Over the
course of the test, the level of energy present in the reserve
dropped below the threshold, but never to zero. The images

downloaded 5 times more quickly than the viewer which
does not scale the images.

6.3 Delegation and Subdivision: Background
Applications

Section 5.4 presented a configuration where system power is
subdivided into a highly powered task manager reserve and
a low powered background reserve. These reserves delegate
their energy to applications running in the foreground and
background, respectively, allowing background applications
to continue to make slow forward progress, but keeping
foreground applications responsive. This experiment uses a
configuration identical to Figure 7.

Figure 12a shows two processes spinning on the CPU,
initially in the background. The background tap provides the
two of them 14 mW, enough to keep the 137 mW CPU at
10% utilization. At about 10 seconds, the task manager se-
lects Process A as the foreground process, granting it enough
energy to fully utilize the CPU (137 mW). Process B con-
tinues to run according to its background power share of
14 mW. At the 20 second mark, the task manager retires
Process A to the background by setting its foreground tap
rate to 0 mW. At 30 seconds, the task manager gives Process
B access to the foreground resources and, similarly, returns
it to the background at 40 seconds.

Figure 12b highlights the need for Cinder to prevent
large-scale hoarding. The configuration is the same ex-
cept the foreground tap gives 300 mW of power. Because
300 mW is greater than the CPU cost of 137 mW, applica-
tions in the foreground can accumulate excess energy. The
two processes move in and out of the foreground as before,
but this accumulated energy changes their behavior. When B
is moved to the foreground, A still has plenty of energy, and
so competes with B for the CPU such that each receives a
50% share. After A exhausts its energy, it returns to its orig-
inal 14 mW. Shortly thereafter, B moves to the background
as well. But just as A did, B accumulated energy during its
time in the foreground and so is able to use ⇠90% of the
CPU until it exhausts its reserve.

The system-wide half-life both caps the total energy
hoarding possible during foreground operation and returns
applications to the natural background power over a 10
minute period. This allows a process to perform an elevated
amount of work briefly after returning to background status
if it underutilized its resources while in the foreground.

6.4 Delegation: Cooperative Network Stack
We demonstrate the effectiveness of Cinder’s modified netd
(shown in Figure 8), comparing it to an energy-unrestricted
network stack. In both experiments, an RSS feed downloader
starts with a poll interval of 60 seconds. Fifteen seconds
later, a mail fetcher daemon starts, also with a 60 second
poll interval. Both applications are provided enough power
to start the radio every 60 seconds, if they work in unison.
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Figure 10. The same image viewer application as in §5.3, but
without dynamic scaling of image quality. The line represents
energy in the downloader’s reserve while the bars represent the
amount of data downloaded per image.
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Figure 11. Image viewer with energy-aware scaling of image
quality enabled. As energy becomes scarce, quality is lowered and
less data is downloaded per image. The experiment takes less than
one-fifth the time to complete within the energy budget versus the
non-adaptive viewer due to adaptation to reduced available energy.

tested with and without energy-aware image scaling. The
tests mimic a user loading a page of images, pausing to view
the images, and then requesting more. We tracked the energy
reserve levels, the amount of data transferred over the net-
work interface, the download time for each batch of images,
and the average bytes transferred per image over time. Each
image was of similar size (⇠2.7 MiB) and each batch con-
tained the same number of images. Pausing between batches
allowed the energy reserve for the downloader thread to fill
at a constant rate. The first pause lasted for 40 seconds, with
each successive pause being 5 seconds shorter than the pre-
vious pause, so a smaller amount of energy built up in the
reserve after each batch was downloaded.

When image download sizes are not scaled back as in
Figure 10, the amount of data transferred stays constant per
batch. With each successive batch, the amount of energy in
the reserve at the start of the batch decreases since the user
pauses more briefly after downloading. Thus the reserve runs
out soon after the start of each batch in this case, with the
image transfers stalling until enough energy is available for
the thread to continue, causing a long run time.

When image requests use energy-aware scaling as in Fig-
ure 11, the quality of images and bytes transferred for each
image drops as the energy level dips, and the transfer time
per image decreases with the smaller image data. Over the
course of the test, the level of energy present in the reserve
dropped below the threshold, but never to zero. The images

downloaded 5 times more quickly than the viewer which
does not scale the images.

6.3 Delegation and Subdivision: Background
Applications

Section 5.4 presented a configuration where system power is
subdivided into a highly powered task manager reserve and
a low powered background reserve. These reserves delegate
their energy to applications running in the foreground and
background, respectively, allowing background applications
to continue to make slow forward progress, but keeping
foreground applications responsive. This experiment uses a
configuration identical to Figure 7.

Figure 12a shows two processes spinning on the CPU,
initially in the background. The background tap provides the
two of them 14 mW, enough to keep the 137 mW CPU at
10% utilization. At about 10 seconds, the task manager se-
lects Process A as the foreground process, granting it enough
energy to fully utilize the CPU (137 mW). Process B con-
tinues to run according to its background power share of
14 mW. At the 20 second mark, the task manager retires
Process A to the background by setting its foreground tap
rate to 0 mW. At 30 seconds, the task manager gives Process
B access to the foreground resources and, similarly, returns
it to the background at 40 seconds.

Figure 12b highlights the need for Cinder to prevent
large-scale hoarding. The configuration is the same ex-
cept the foreground tap gives 300 mW of power. Because
300 mW is greater than the CPU cost of 137 mW, applica-
tions in the foreground can accumulate excess energy. The
two processes move in and out of the foreground as before,
but this accumulated energy changes their behavior. When B
is moved to the foreground, A still has plenty of energy, and
so competes with B for the CPU such that each receives a
50% share. After A exhausts its energy, it returns to its orig-
inal 14 mW. Shortly thereafter, B moves to the background
as well. But just as A did, B accumulated energy during its
time in the foreground and so is able to use ⇠90% of the
CPU until it exhausts its reserve.

The system-wide half-life both caps the total energy
hoarding possible during foreground operation and returns
applications to the natural background power over a 10
minute period. This allows a process to perform an elevated
amount of work briefly after returning to background status
if it underutilized its resources while in the foreground.

6.4 Delegation: Cooperative Network Stack
We demonstrate the effectiveness of Cinder’s modified netd
(shown in Figure 8), comparing it to an energy-unrestricted
network stack. In both experiments, an RSS feed downloader
starts with a poll interval of 60 seconds. Fifteen seconds
later, a mail fetcher daemon starts, also with a 60 second
poll interval. Both applications are provided enough power
to start the radio every 60 seconds, if they work in unison.



POOLING

Time (s)

0 10 20 30 40 50 60

E
st

. 
P

o
w

e
r 

(m
W

)

0

40

80

120

160

A B

A in foreground
B in foreground

(a)

Time (s)

0 10 20 30 40 50 60

E
st

. 
P

o
w

e
r 

(m
W

)

0

40

80

120

160

A
B

A in foreground
B in foreground

(b)

Figure 12. Stacked graph of Cinder’s CPU energy accounting
estimates as processes A and B spin on the CPU. Together, they
are allowed 14 mW while in the background. The task manager
runs A in the foreground in the 10 - 20 second interval and B in the
foreground during the 30 - 40 second interval. (a) shows the results
for the foreground tap providing the process with 137 mW (the
precise cost of using the CPU at 100%). (b) shows the foreground
tap providing the process with 300 mW. The dotted line shows
actual power measurements compensated for baseline power draw
with an idle CPU and averaged over 1 second intervals.
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Figure 13. Two background applications, a pop3 mail and an
RSS fetcher, each poll every sixty seconds. a) Since they are not
coordinated, their use of the radio is staggered, resulting in in-
creased power consumption. Each application uses the radio for at
most a few seconds, but neither takes advantage of the other hav-
ing brought the radio out of the low power idle state. b) The same
mail and RSS background applications using reserves and limits to
coordinate their access to the radio data path. Enough energy is al-
located to each application to turn the radio on every two minutes.
By pooling their resources, they are able to turn the radio on at most
every sixty seconds.
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Figure 14. The level of the reserve into which the two back-
ground applications transfer their allotted joules. When the reserve
reaches a level sufficient to pay for the cost of transitioning the ra-
dio to the active state, it is debited, the radio is turned on, and the
processes proceed to use the network. Although Figure 4 showed
an average 9.5 J cost to power up the radio, netd requires 125%
of this level before turning the radio on, essentially mandating that
applications have extra energy to transmit and receive subsequent
packets. Therefore, the reserve does not empty to 0.

Non-Coop Coop Improv
Total Time 1201s 1201s N/A

Total Energy 1238J 1083J 12.5%
Active Time 949s 510s 46.3%

Active Energy 1064J 594J 44.2%

Table 1. Improvements in energy consumption and active radio
time using cooperative resource sharing in Cinder. Energy use due
to the radio is reduced, resulting in a 12.5% total system power
reduction over the 20 minute experiment.

Figure 13a shows the uncooperative applications wasting
energy – running when the radio is idle and powering it up
independently. Neither combines efforts to amortize costs.

In comparison, Figure 13b shows what happens with the
modified netd. Each application still only receives enough
energy to activate the radio every two minutes; however,
when they initiate network operations, their threads block
and contribute acquired energy to the netd reserve (Fig-
ure 14). Since the two threads combine their power in the
netd reserve, every 60 seconds enough energy is saved to
use the radio and both applications proceed simultaneously.

Using delegation, independent applications in Cinder au-
tomatically collaborate, improving quality of service. In this
case, the improved quality of service is increasing the fre-
quency of mail and news checks by a factor of two, using
the same energy budget. Table 1 shows the energy savings of
the modified netd. In total, 12.5% less energy is used in the
same time interval for an equivalent amount of work. While
significant, we stress that our baseline power consumption
is artificially dominant, as Cinder does nothing to place the
hardware into lower power states while idle in contrast to
Linux. We expect Cinder to provide greater improvement on
a mature mobile platform that makes full use of power sav-
ing features.



SUMMARY

• token-bucket shaping for energy use

• throttling threads when energy reserve is depleted

• enables energy isolation and controlled delegation

• applications can adapt and pool
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Figure 9: Video playback power breakdown. Aggregate
power excluding backlight is 453.5 mW.
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Figure 10: Power breakdown for sending an SMS. Ag-
gregate power consumed is 302.2 mW, excluding back-
light.

the contacts application and selecting a contact, typing
and sending a 55-character message, then returning to
the home screen; lasting a total of 62 seconds. To en-
sure the full cost of the GSM transaction is included, we
measured power for an additional 20 seconds. The aver-
age result of 10 iterations of this benchmark are shown
in Figure 10. Again, the power for four backlight bright-
ness levels is shown.

Power consumed is again dominated by the display
components. The GSM radio shows an average power of
66.3± 20.9 mW, only 7.9 mW greater than idle over the
full length of the benchmark, and accounting for 22 %
of the aggregate power (excluding backlight). All other
components showed an RSD of below 3 %.

3.3.4 Phone call

Figure 11 shows the power consumption when making
a GSM phone call. The benchmark is trace-based, and
includes loading the dialer application, dialing a number,
and making a 57-second call. The dialled device was
configured to automatically accept the call after 10 sec-
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Figure 11: GSM phone call average power. Excluding
backlight, the aggregate power is 1054.3 mW.
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Figure 12: Power consumption for the email macro-
benchmark. Aggregate power consumption (excluding
backlight) is 610.0 mW over GPRS, and 432.4 mW for
WiFi.

onds. Thus, the time spent in the call was approximately
40 seconds, assuming a 7-second connection time. The
total benchmark runs for 77 seconds.

GSM power clearly dominates in this benchmark at
832.4± 99.0 mW. Backlight is also significant, however
note that its average power is lower than in other bench-
marks, since Android disables the backlight during the
call. The backlight is active for approximately 45 % of
the total benchmark.

3.3.5 Emailing

For this benchmark, we used Android’s email applica-
tion to measure the cost of sending and receiving emails.
The workload consisted of opening the email applica-
tion, downloading and reading 5 emails (one of which
included a 60 KiB image) and replying to 2 of them. The
results of the benchmark are shown in Figure 12, aver-
aged over 10 iterations.

The power breakdown between the GPRS and WiFi
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Figure 9: Video playback power breakdown. Aggregate
power excluding backlight is 453.5 mW.
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gregate power consumed is 302.2 mW, excluding back-
light.

the contacts application and selecting a contact, typing
and sending a 55-character message, then returning to
the home screen; lasting a total of 62 seconds. To en-
sure the full cost of the GSM transaction is included, we
measured power for an additional 20 seconds. The aver-
age result of 10 iterations of this benchmark are shown
in Figure 10. Again, the power for four backlight bright-
ness levels is shown.

Power consumed is again dominated by the display
components. The GSM radio shows an average power of
66.3± 20.9 mW, only 7.9 mW greater than idle over the
full length of the benchmark, and accounting for 22 %
of the aggregate power (excluding backlight). All other
components showed an RSD of below 3 %.

3.3.4 Phone call

Figure 11 shows the power consumption when making
a GSM phone call. The benchmark is trace-based, and
includes loading the dialer application, dialing a number,
and making a 57-second call. The dialled device was
configured to automatically accept the call after 10 sec-
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Figure 11: GSM phone call average power. Excluding
backlight, the aggregate power is 1054.3 mW.
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Figure 12: Power consumption for the email macro-
benchmark. Aggregate power consumption (excluding
backlight) is 610.0 mW over GPRS, and 432.4 mW for
WiFi.

onds. Thus, the time spent in the call was approximately
40 seconds, assuming a 7-second connection time. The
total benchmark runs for 77 seconds.

GSM power clearly dominates in this benchmark at
832.4± 99.0 mW. Backlight is also significant, however
note that its average power is lower than in other bench-
marks, since Android disables the backlight during the
call. The backlight is active for approximately 45 % of
the total benchmark.

3.3.5 Emailing

For this benchmark, we used Android’s email applica-
tion to measure the cost of sending and receiving emails.
The workload consisted of opening the email applica-
tion, downloading and reading 5 emails (one of which
included a 60 KiB image) and replying to 2 of them. The
results of the benchmark are shown in Figure 12, aver-
aged over 10 iterations.

The power breakdown between the GPRS and WiFi



DISCUSSION

• interesting mechanism, but does it allow useful management?

• thinking inside the box: energy should be like CPU time

• hard: deadlines are inherent, energy cap is not

• thinking outside the box: system does only useful work

• efficiency: order requests to use resource better

• adaptivity: quality-resource tradeoff


