
BORROWED VIRTUAL TIME
Kenneth J. Duda & David R. Cheriton



MOTIVATION

• general purpose schedulers provide only fair sharing

• degrades latency-sensitive applications

• specialized real-time schedulers require specification

• forces applications into task model

• find a middle ground



WEIGHTED FAIR SHARING
2 BVT scheduling

With BVT scheduling, thread execution time is monitored in
terms of virtual time, dispatching the runnable thread with
the earliest effective virtual time (EVT). However, a latency-
sensitive thread is allowed to warp back in virtual time to
make it appear earlier and thereby gain dispatch preference.
It then effectively borrows virtual time from its future CPU
allocation and thus does not disrupt long-term CPU sharing.
Hence the name, borrowed virtual time scheduling. This al-
gorithm is described in detail in the rest of this section.

Each BVT thread includes the state variables , its ef-
fective virtual time (EVT); , its actual virtual time (AVT);
, its virtual time warp; and , set if warp is en-

abled. When a thread unblocks or the currently executing
thread blocks, the scheduler runs thread if it has the mini-
mum of all the runnable threads.

The EVT for the thread is computed as:

where is determined as described later.
The scheduler accounts for running time in units of min-

imum charging unit (MCU) or , typically the frequency
of clock interrupts. That is, a thread that runs for
time is charged for running for time. A thread that
runs for microseconds has this amount rounded up to the
next multiple of and then charged for time units. If

is approximately the context switch cost, the round-
ing up on average charges the current process for the context
switch.

The scheduler is confi gured with a context switch al-
lowance , which is the real time by which the current
thread is allowed to advance beyond another runnable thread
with equal claim on the CPU. is typically larger than, and
a multiple of, , preventing two compute-bound threads
at same AVT from thrashing by switching on every timer in-
terrupt. For example, a system scheduler could use
milliseconds and microseconds. is thus simi-
lar to the quantum in conventional timesharing.

2.1 Weighted fair sharing
Each runnable thread receives a share of the processor in
proportion to its weight over a scheduling window of
some number of (see Section 6). To achieve this, the
AVT of the currently running thread is incremented
by its running time divided by . In implementation, the
scheduler stores for each thread an advance variable,
, that is set proportional to . The scheduler incre-

ments by on a context switch when thread has
run for microseconds, as above. On each AVT update, the
scheduler switches from current thread to runnable thread
if

to factor into the context switch decision.

0
20
40
60
80
100
120
140
160
180

0 3 6 9 12 15 18 21 24 27

gcc
bigsim

Figure 1. Weighted fair sharing of the CPU. The X
axis is real time (in ) and the Y axis is virtual time
so a running thread appears as a diagonal line and a
waiting (runnable) thread appears as a flat line. Gcc
has twice the weight of bigsim so it receives 2/3 of the
CPU while bigsim receives 1/3. The scheduler gives
all runnable threads equal amounts of virtual time, and
gcc consumes its virtual time more slowly because of
its greater weight.

This sharing of the CPU is illustrated in Figure 1 where
the vertical axis indicates virtual time and the horizontal axis
indicates physical time (in ). Context switches occur
when the running thread passes the waiting thread by 2
(the context switch allowance). Over a scheduling window
of 9 , each thread receives its fair share. In general,
the error between fair share and actual allocation is never
greater than the context switch allowance plus one if
the threads are all runnable. The lines on the graph intersect
where precise sharing is achieved.

When thread becomes runnable after sleeping

where scheduler virtual time (SVT) is a scheduler variable
indicating the minimum of any runnable thread1. This ad-
justment prevents a thread from claiming an excessive share
of the CPU after sleeping for a long time as might happen
if there was no adjustment, as illustrated in Figure 2. With
this adjustment, a thread gets the same share of the CPU on
wakeup as if it has been runnable but not dispatched to this
point because it is given the same AVT in both cases.

The scheduler can consider the AVT of threads blocked
by involuntary sleep, such as a page fault, as part of the min-
imum computation to avoid the problem of a runnable batch

SVT captures the notion of the current virtual time of the
scheduler’s threads, similar to the role of global virtual time (GVT)
with optimistic parallel simulation. Any thread that is not runnable
is effectively blocked on an event in the future and so does not hold
back SVT or GVT.



VIRTUAL TIME

• each thread carries a virtual timestamp

• increases when the thread runs

• increment inversely proportional to thread’s weight

• waking from sleep advances virtual time to the minimum of all 
runnable threads

• switch to thread with smallest virtual time when running 
thread exceeds lead bound



DISPATCH LATENCY

• threads can warp back in time

• effective virtual time = actual virtual time – warp time

• effective virtual time is used for scheduling

• allows a thread to borrow time from its future execution

• warping is constrained by warp time limit and 
unwarp time requirement



THOUGHT EXPERIMENT

• write a video player with this concept

• you have to decide on the following parameters:

• weight: CPU share you need

• warp: global dispatch priority

• limits: how nice you are to others



EXPERIMENTS

namely:

mpeg play — the Berkeley mpeg play MPEG-1 video
decoder [12], playing back MPEG video fi les at 60
frame per second, with a warp = 50000. It was mod-
ifi ed to record whether the frame got displayed on
time by reading the system clock after receiving the X
Shared Memory Operation Complete event; we defi ne
“on time” as within 30 millisecond of the ideal time
based on the previous frame4.

int — run in 125 millisecond bursts with a warp of 500,
using 30 percent of the CPU, modeling a heavy inter-
active process.

grep — unmodifi ed Linux grep/fi nd.

cont — run continuously with warp 0, modeling a CPU-
intensive process.

rt — runs for 5 milliseconds with a warp of 100000 and
then sleeps for 95 milliseconds with a corresponding
warp time limit and unwarp time requirement, model-
ing a periodic hard real-time task.

All experiments were run on a Pentium III 500 Mhz sys-
tem with 384 mb RAM running Linux 2.3.17 modifi ed to
include our implementation of BVT, which can be enabled
or disabled using a runtime switch. The kernel was also
modifi ed to generate an in-memory log of wakeups, context
switches, and warping events, and to measure the overhead
of our BVT scheduling implementation. Timestamps are
based on the Pentium cycle counter, accurate to 1 microsec-
ond, as provided to the machine-independent layer. Unless
otherwise noted, all numbers below were obtained from the
logs.

In these experiments, we set the X server’s warp to
the same as mpeg play, given they are equally latency-
sensitive.

In all experiments, the context switch allowance is set to
200 milliseconds, resulting in a context switch rate between
CPU-bound jobs comparable to that of other system such
as Linux or Solaris. However, this allowance only affects
time-slicing threads; a thread is immediately dispatched on
wakeup if its EVT is less than or equal to that of the current
thread.

Our measurements indicate that the scheduler overhead
is less than 0.3% for all runs, evenwith two-level scheduling,
The overhead includes costs of log generation and the over-
headmeasurement itself (making it a slight overestimate) but
not the context switch itself or the indirect costs of reduced
cache and TLB performance, because all scheduling algo-
rithms incur these costs. The 0.3% scheduler overhead in-
dicates that this cost is not signifi cant with BVT, so it is not
considered further.

Also, our experiments indicate that each thread gets
within a few percent of its weighted fair share of the CPU

In the measurements of this section, a stricter notion of “on
time” such as 1 ms. would have made BVT look even better and
Linux appear worse, while not reflecting what was actually visually
noticeable.

Measure BVT Linux
Frames 553 284
frame rate 29.78 14.91
late 8 113

Table 1. Video Player frame performance when com-
peting with a large-scale text search. A frame is on-
time if within 30 milliseconds of the frame time.

when the thread is runnable over a signifi cant period of time.
Moreover, as argued in Section 6, this should always occur
over a suitable scheduling window of time.

Thus, the rest of this section focuses on dispatch latency
and response time.

4.1 MPEG player and grep
The fi rst measurement captures a variant of the scenario
described in the introduction, namely a software engineer
watching a training video running mpeg play on his or
her Linux PC while running a 4-way parallel “grep” over a
large number of fi les, such as a product source tree. Table 1
characterizes MPEG performance for two confi gurations: 1)
BVT scheduling with mpeg play and the X server warped
by 50000 and other programs warped by 100, and 2) stan-
dard Linux scheduling with default parameter settings and
the same programs.

Subjectively, with BVT, the video is basically glitch-free
while with standard Linux, the video is painful to watch.
This assessment is supported by the measurements. As the
fi rst line of the table indicates, Linux produces only roughly
51% of the frames produced under BVT over the same time
interval, leading to roughly half the frame rate. With the
mpeg play implementation, the video playback is simply
slowed down by that amount, but if it was held strictly to
real time, it would drop about half frames, often multiple
frames at a time. Moreover, 113 frames or almost 50% of
the delivered frames were late under Linux, several late by
over 100 ms. The net effect is an unacceptably poor quality
of video playback under standard Linux.

With BVT, only a little over 1 percent of the frames were
late, likely due to I/O conflicts, so the video performance
was fi ne. The large 4-way grep receives roughly 20% less
CPU than under Linux, but that seems like a reasonable price
to pay for high-quality video back.

We also performed experiments running mpeg play
concurrently with cont, a strictly compute-bound test pro-
gram. However, the standard Linux scheduler correctly
gives compute-bound processes lower priority so the dif-
ferences are not as signifi cant. Strictly compute-bound ap-
plications are less realistic compared to a real text search,
which makes extensive use of disk. Nevertheless, the
standard Linux scheduler did surprisingly well running
mpeg play against various batch applications, suggesting
that a more sophisticated scheduler is most compelling with
really latency-critical workloads, such as (hard) real-time.



DEADLINE SCHEDULING

20%

40%

60%

80%

100%

none low medium high hopeless

%
 d

ea
dl

in
es

 m
ad

e

Deadlines made

DBS (exact)
BVT (diff)

Fixed Prio
BVT (same)

Round Robin

Figure 5. Percentage of deadlines made with dif-
ferent schedulers, relative to different levels of con-
tention, indicated by X axis, assuming accurate CPU
need predictions. Levels of contention correspond to

and for none, low, medium,
high, and hopeless.

’s, and is the prediction error, calculated as specifi ed
below. Finally, is calculated as where
is a test parameter specifying how “fussy” the thread is about
when it runs. That is, if is 0, then the thread is willing to
run at any point between its deadlines, so it is easy to sched-
ule, but as approaches 1, moves closer to , resulting
in a constraint that is harder to satisfy.

To approximate error in prediction of CPU need, ran-
dres introduces this error in one of three modes: overpre-
dict, underpredict, and best guess, corresponding to positive,
negative and mixed respectively. The average magnitude
of is a test parameter in the range of 0 to 3. Overpredict-
ing models an application that reserves extra CPU to ensure
it makes its deadlines at the risk of having its requests denied
or causing the requests of others to be denied unnecessarily.

A test workload was confi gured consisting of two in-
stances of randres and one instance of cont, run on
each of BVT, DBS and (for further comparison) a fi xed-
priority scheduler (FPS) and a weighted round robin sched-
uler (WRR) (BVT with warp = 0 for all threads), using vari-
ous values of . When running on DBS, cont receives only
unreserved quanta. When running on FPS, the randres
instances have priority 1 (highest) and 2, and cont has pri-
ority 3. When running on BVT, the quantum advances are
set to be 100 for each randres and 3500 for cont, divid-
ing the CPU 49.25%, 49.25%, 1.5%, so that neither ran-
dres instance ever exceeds its fair share. The randres
instances warp 40000 and 20000 respectively, modeling two
threads with different latency requirements.

5.2 Deadlines: no prediction error
Figure 5 shows the deadlines made with these various test
confi gurations, using , i.e. completely (and unrealisti-

20%
30%
40%
50%
60%
70%
80%
90%

100%
%made

0 %err 7.4 %err 13.3 %err 19.1 %err

Low Contention

DBS upper % made
DBS middle % made

DBS lower % made
BVT % made

Figure 6. Deadlines made relative to prediction error
with low contention (most deadlines feasible).

cally) accurate CPU predictions. The “DBS” column repre-
sents optimal performance with FCFS handling of reserva-
tion requests, given that the predictions are exact and DBS
only runs a task if the task can make its deadline. That is, it
does not waste resources or deny requests that it could sat-
isfy in favor of ones it cannot, as can occur with inaccurate
estimates.

These measurements show that BVT is within 10% of
DBS and has the same behavior as fi xed priority (in the ab-
sence of failure). WRR is uncompetitive as one would ex-
pect. BVT (diff) with different warp values performs better
than BVT (same) where the two instances of randres use
the same warp values. In reality, different tasks have dif-
ferent latency requirements, so different warp values make
sense in practice. Moreover, with DBS, two threads that at-
tempt to schedule at the same time run the risk of one being
refused. If they do not conflict, they also work just fi ne with
BVT and the same warp value.

5.3 Deadlines: prediction error
Figures 6, 7, and 8 show the effect of prediction error on
DBS.

In these graphs, for each degree of error, there is a ver-
tical bar for each of three runs: the fi rst bar, “DBS upper”,
is for positive error (i.e., the prediction is higher than the ac-
tual need); the second bar “DBS middle”, is for positive and
negative error; and the third bar, “DBS lower”, is for neg-
ative error. The horizontal line on the graph is the fraction
of deadlines made by BVT for the given level of contention.
(BVT is not sensitive to the magnitude or sign of error be-
cause BVT does not rely on a thread’s prediction of its future
CPU needs.) When the horizontal line is above the vertical
bars, BVT is making a larger fraction of deadlines than DBS.

Considering these graphs, BVT performs as well as DBS
under high contention with CPU predictions in error by less
than 7.4%, is competitive with DBS at medium contention
with error between 7.4% and 13.3%. and performs just as



DEADLINE SCHEDULING

20%
30%
40%
50%
60%
70%
80%
90%

100%
%made

0 %err 7.4 %err 13.3 %err 19.1 %err

Medium Contention

DBS upper % made
DBS middle % made

DBS lower % made
BVT % made

Figure 7. Deadlines made relative to prediction error
with medium contention (90% deadlines feasible).

20%
30%
40%
50%
60%
70%
80%
90%

100%
%made

0 %err 7.4 %err 13.3 %err 19.1 %err

High Contention

DBS upper % made
DBS middle % made

DBS lower % made
BVT % made

Figure 8. Deadlines made relative to prediction error
with high contention (69% of deadlines feasible).

well as DBS under low contention once the prediction er-
ror reaches 13.3%. Thus, error in prediction degrades DBS
signifi cantly, especially under high load, which is where
scheduling matters the most. Therefore, these experiments
suggest that, unless the application developers can program
so that the CPU predictions are within 15%, using BVT is
better than using DBS, given the other advantages of BVT
over DBS such as simplicity, effi ciency and greater general-
ity. Predicting future CPU needs within 15% is diffi cult be-
cause of uncertainties about workload, cache behavior, TLB
behavior, and interrupts. For example, the CPU cycles to de-
compress and blit a frame can vary by more than an order
of magnitude in the MPEG player used in Section 4. Fur-
ther, even when predictions are exact, only about 10% more
deadlines are made using DBS than using BVT.

This basic result should apply to other deadline-based
scheduling approaches, such as SMART [11] and EEVDF
[4]. These systems differ from DBS primarily in their algo-
rithm for deciding whether to accept a reservation request,
adding requirements beyond mere feasibility (e.g. to im-
prove fairness). We do not expect these differences to affect
the result.

5.4 Utility of deadline scheduling
The utility of deadlines as the basis for an operating system
scheduler seems limited. Many tasks, such as network input
processes, do not have specifi c deadlines by which to accom-
plish their processing, so the deadline notion does not apply
even though these tasks are latency sensitive.

Also, many tasks cannot predict their processing require-
ments well in advance and thus risk having deadline requests
being refused at an intermediate point in the execution of
the system. For example, the network input process cannot
predict that it needs to process a packet until that packet ar-
rives, and cannot predict how many cycles will be required
to process it when it does arrive. The request for a dead-
line for this processing right when the packet arrives can be
refused, leaving the thread to time slice with other low pri-
ority threads. On the other hand, threads that are suitable
for deadlines (because they have predictable processing re-
quirements so they request reservations well in advance) are
typically periodic tasks whose requirements are easily ex-
pressible as BVT parameters5 and thus can be handled by a
simpler, more general scheduler such as BVT.

Jitter control is also diffi cult with deadline schedulers. A
thread that allows only a short time between the requested
starttime and deadline risks the request being refused (be-
cause the scheduler has less latitude to satisfy it) causing it to
run time-sliced with unpredictable delay and jitter. A thread
that allows a long time instead risks signifi cant jitter in its
periodic execution (because the scheduler is free to dispatch
it any time after the start time as long as it is suffi ciently
before the deadline).

Conversely, the warp time limit and unwarp time requirement
might be regarded as an efficient way to specify deadline-like re-
quirements for periodic tasks. However, these parameters are use-
ful in another cases as well.



SCENARIOS

• hard real-time: relative CPU shares become absolute rates 
when you run admission

• pick warp values like priorities

• two-level BVT scheduling:
fully nested, warp threshold, direct



CONCLUSION

• BVT is great

• simple mechanism

• generally applicable

• efficient

• outperforms EDF

• BVT’s contribution is small

• unintuitive parameters

• with admission (not included)

•… OK, maybe

• if compared unfairly



Subtracting a warp factor from a task’s timestamp 
seems to be like saying, do this yesterday—it has no 
coherent meaning. Instead, BVT uses virtual time as a 
simple mechanism for ordering tasks: warping a task 
moves it up in the ready queue, and this reduces its 
dispatch latency. As a result, it is not clear exactly 
what kinds of behaviors BVT can provide. For 
instance, how do multiple warped tasks interact with 
each other? How does a user set the various warp 
parameters for all applications in order to produce a 
desired overall system behavior?



• How useful are fair-share schedulers to applications?

• Is deadline not a more natural way to specify timing 
requirements?

• Is this whole fairness-thing a leftover from the bygone days of 
multiuser terminal servers?

• fairness first, timing second vs. timing first, fairness second

DISCUSSION


