
Introduction Related OSs Design of CuriOS Evaluation Conclusion

CuriOS: Improving Reliability through Operating
System Structure

Nils Asmussen

Paper Reading Group

08/29/2012

1 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Outline

1 Introduction

2 Related OSs

3 Design of CuriOS

4 Evaluation

5 Conclusion

2 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Outline

1 Introduction

2 Related OSs

3 Design of CuriOS

4 Evaluation

5 Conclusion

3 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Motivation

OS reliability is still a major issue

Microkernels improve that by isolating components from each
other

But most of them don’t support restartability or at least not
in a satisfying way

Problem 1: blindly restarting services does not help because of
client-specific state

Problem 2: Still too much rights (e.g. destroying state of
client A while serving client B)

4 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Alternatives

Redundancy in HW and SW helps but is expensive

Writing clients that are aware of faulting services is possible
but difficult

Checkpointing

Requires multiple checkpoints to avoid rolling back to a broken
state
Leads to high memory and performance overhead

5 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Outline

1 Introduction

2 Related OSs

3 Design of CuriOS

4 Evaluation

5 Conclusion

6 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Brief Description

Minix3

Reincarnation server is responsible for restarting crashed
services and drivers

Does only work well for stateless drivers/services

Provides Datastore that can be used for checkpoints

L4/Iguana

Collection of OS services running on top of L4Ka::Pistachio

Offers resource management, protection and some device
drivers

No support for restartability

7 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Brief Description

Chorus

Services run in privileged mode and share address space of
kernel

“Hot restart” mechanism allows servers to maintain their state

No technique to prevent corruption of state

Chorus OS services don’t take advantage of “hot restart”

EROS

Saves snapshots periodically to disk

Performs some consistency checks and keeps multiple
snapshots

8 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Comparison

Kernel Restartability
Minix3 Works only for stateless services

L4/Iguana Might work for stateless services

Chorus Does not work for stateful (?), stateless?

EROS May work by restoring checkpoint

9 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Observations

Transparency of addressing
→ Clients should be able to use the same address

Suspension of clients
→ No time outs or new requests during recovery

Persistence of client-specific state
→ Results of previous requests should persist

Isolation of client-specific state
→ An error should not corrupt state of unaffected clients

10 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Outline

1 Introduction

2 Related OSs

3 Design of CuriOS

4 Evaluation

5 Conclusion

11 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Overview

12 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Server State Management

Basics

Servers that need client-specific state use the state
management of CuiK

A Server State Region (SSR) is an object that can be memory
protected

It is created if a client establishes a connection to a server

A server can only access the SSR while it is processing a
request from the corresponding client

13 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Server State Management

Server types

1 Servers that do not require all client-states for operation

2 Servers that need all client-states

Consistency checks

1 Recovery routine uses magic numbers in objects that are
checked

2 Server-specific checks can be implemented to ensure that
pointers and numbers are within expected ranges

14 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Server State Management

Server types

1 Servers that do not require all client-states for operation

2 Servers that need all client-states

Consistency checks

1 Recovery routine uses magic numbers in objects that are
checked

2 Server-specific checks can be implemented to ensure that
pointers and numbers are within expected ranges

14 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Outline

1 Introduction

2 Related OSs

3 Design of CuriOS

4 Evaluation

5 Conclusion

15 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Error Recovery

16 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Performance

Operation Instructions Time
Context Switch ? 74µs

Protected Call Without SSR 1594± 4 195.7± 0.5µs

Protected Call With SSR 4893± 3 378.9± 0.9µs

Error detection + Recovery ? X ∗ 100µs

17 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Memory

SSRs

Each SSR is memory protected and thus has to be on its own
page (1KB on ARM)

Assuming that typical client states are quite small, you waste
nearly one page per client

POs

Each PO has its own heap and a stack for every thread that
uses the PO

They say that the overhead per PO is in the order of tens of
KBs

Taking into account that they designed the file service to use
one PO per open file, this is quite a lot

18 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Memory

SSRs

Each SSR is memory protected and thus has to be on its own
page (1KB on ARM)

Assuming that typical client states are quite small, you waste
nearly one page per client

POs

Each PO has its own heap and a stack for every thread that
uses the PO

They say that the overhead per PO is in the order of tens of
KBs

Taking into account that they designed the file service to use
one PO per open file, this is quite a lot

18 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Outline

1 Introduction

2 Related OSs

3 Design of CuriOS

4 Evaluation

5 Conclusion

19 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Conclusion

Nice concepts for restartable services and protection against
unaffected state corruption

Unsatisfying evaluation

A lot of open questions . . .

20 / 21



Introduction Related OSs Design of CuriOS Evaluation Conclusion

Discussion Questions

How big is the private heap in POs and can it grow?

How do they place programs in the single-address-space OS?
PIC? statically specified?

Shouldn’t it be possible to build a similar system with multiple
address spaces?

Performance overhead? Comparison? Real workload?

Is the memory overhead really acceptable?

What about some kind of segmentation instead of paging?

21 / 21


	Introduction
	Related OSs
	Design of CuriOS
	Evaluation
	Conclusion

