CuriOS: Improving Reliability through Operating
System Structure

Nils Asmussen

Paper Reading Group

08//29/2012

1/21

Outline

@ Introduction

© Related OSs

© Design of CuriOS
@ Evaluation

© Conclusion

2/21

Introduction

Outline

@ Introduction

3/21

Introduction

Motivation

@ OS reliability is still a major issue

@ Microkernels improve that by isolating components from each
other

@ But most of them don’t support restartability or at least not
in a satisfying way

@ Problem 1: blindly restarting services does not help because of
client-specific state

@ Problem 2: Still too much rights (e.g. destroying state of
client A while serving client B)

4/21

Introduction

Alternatives

@ Redundancy in HW and SW helps but is expensive

o Writing clients that are aware of faulting services is possible
but difficult
@ Checkpointing
e Requires multiple checkpoints to avoid rolling back to a broken

state
o Leads to high memory and performance overhead

5/21

Related OSs

Outline

© Related OSs

6/21

Related OSs

Brief Description

@ Reincarnation server is responsible for restarting crashed
services and drivers

@ Does only work well for stateless drivers/services

@ Provides Datastore that can be used for checkpoints

L4/Iguana

@ Collection of OS services running on top of L4Ka::Pistachio

o Offers resource management, protection and some device
drivers

@ No support for restartability

7/21

Related OSs

Brief Description

@ Services run in privileged mode and share address space of
kernel

@ “Hot restart” mechanism allows servers to maintain their state
@ No technique to prevent corruption of state

@ Chorus OS services don't take advantage of “hot restart”

EROS

@ Saves snapshots periodically to disk

@ Performs some consistency checks and keeps multiple
snapshots

N

8/21

Comparison

Related OSs

Kernel Restartability

Minix3 Works only for stateless services
L4/Iguana Might work for stateless services

Chorus Does not work for stateful (7), stateless?
EROS May work by restoring checkpoint

9/21

Related OSs

Observations

@ Transparency of addressing
— Clients should be able to use the same address

@ Suspension of clients
— No time outs or new requests during recovery

@ Persistence of client-specific state
— Results of previous requests should persist

@ lIsolation of client-specific state
— An error should not corrupt state of unaffected clients

10/21

Design of CuriOS

Outline

© Design of CuriOS

11/21

Design of CuriOS

Overview

Curios!

| Heap ‘ Heap ‘

Object Object

Stack| [stack, ,,| [stacK [stacK , .
T T2 T T

I
I
I
App1 App2 App3 ! Protected | Protected
|
I
I
I
|

Unprivileged

Mode ! System Interface API Protected Method Callg
Privileged j: Application Interface Object

Mode | CuikK

12 /21

Design of CuriOS

Server State Management

Basics

@ Servers that need client-specific state use the state
management of CuiK

@ A Server State Region (SSR) is an object that can be memory
protected

@ It is created if a client establishes a connection to a server

@ A server can only access the SSR while it is processing a
request from the corresponding client

13/21

Design of CuriOS

Server State Management

Server types
@ Servers that do not require all client-states for operation

@ Servers that need all client-states

14 /21

Design of CuriOS

Server State Management

Server types

@ Servers that do not require all client-states for operation

@ Servers that need all client-states

v

Consistency checks

© Recovery routine uses magic numbers in objects that are
checked

@ Server-specific checks can be implemented to ensure that
pointers and numbers are within expected ranges

A\

14 /21

Evaluation

Outline

@ Evaluation

15 /21

Error Recovery

% total manifested faults

100

e
[}

(=)
(=)

I
=)

[
[}

Evaluation

=
@ Detected but not recovered
[Not Detected by PO

Detected and successfully recovered

MR MR MR
Timer Scheduler Net

MR
Filesys

16 /21

Evaluation
Performance

Operation Instructions Time
Context Switch 7 T4us
Protected Call Without SSR | 1594 + 4 195.7 £ 0.5us
Protected Call With SSR 4893 + 3 378.9 + 0.9us
Error detection + Recovery 7 X % 100us

17 /21

Evaluation

@ Each SSR is memory protected and thus has to be on its own
page (1KB on ARM)

@ Assuming that typical client states are quite small, you waste
nearly one page per client

18 /21

Evaluation

@ Each SSR is memory protected and thus has to be on its own
page (1KB on ARM)

@ Assuming that typical client states are quite small, you waste
nearly one page per client

A,

POs
@ Each PO has its own heap and a stack for every thread that
uses the PO
@ They say that the overhead per PO is in the order of tens of
KBs
@ Taking into account that they designed the file service to use
one PO per open file, this is quite a lot

18 /21

Conclusion

Outline

© Conclusion

19/21

Conclusion

Conclusion

@ Nice concepts for restartable services and protection against
unaffected state corruption

@ Unsatisfying evaluation

@ A lot of open questions ...

20 /21

Conclusion

Discussion Questions

@ How big is the private heap in POs and can it grow?

@ How do they place programs in the single-address-space OS?
PIC? statically specified?

@ Shouldn't it be possible to build a similar system with multiple
address spaces?

@ Performance overhead? Comparison? Real workload?

@ Is the memory overhead really acceptable?

What about some kind of segmentation instead of paging?

21/21

	Introduction
	Related OSs
	Design of CuriOS
	Evaluation
	Conclusion

