RAMCloud

Overview

- Datacenters split into application and storage servers
- Use RAMCloud for storage
 - All Information is kept in DRAM at all times
 - (not like memcached, data not stored on I/O device)
 - auto scaling, application sees one large storage
 - must be as durable as if stored on disk
- 100x-1000x better performance than current disk-based storage

Configuration of a RAMCloud

- Table 1 = currently cost-effective
- With additional servers as large as 500TB possible
- Within 5-10 years depending on DRAM technology up to 1-10 PB at < 5\$/GB

# servers	1000
Capacity/server	64 GB
Total capacity	64 TB
Total server cost	\$4M
Cost/GB	\$60
Total throughput	10 ⁹ ops/sec

Table 1. An example RAMCloud configuration using currently available commodity server technology. Total server cost is based on list prices and does not include networking infrastructure or racks.

Motivation

• Databases do not scale well:

"virtually every popular Web application [...] found [RDBs] cannot meet its throughput requirements" require special purpose techniques

- Facebook: 4000 MySQL Servers, still do not meet throughput demand \rightarrow 2000 mcached servers
- new storage systems (Bigtable, Dynamo) to address scalability issues, but only for specialized scenarios
- give up some ACID properties

Technology Trends

• Files need to be larger today to achieve 90% maximum transfer rates

	Mid- 1980s	2009	Improvement
Disk capacity	30 MB	500 GB	16667x
Maximum transfer rate	2 MB/s	100 MB/s	50x
Latency (seek + rotate)	20 ms	10 ms	2x
Capacity/bandwidth (large blocks)	15 s	5000 s	333x worse
Capacity/bandwidth (1KB blocks)	600 s	58 days	8333x worse
Jim Gray's Rule [12] (1KB blocks)	5 min.	30 hours	360x worse

Caching

- Facebook keeps 25% of data in main memory on memcached servers, 96.5% Hitrate
- Incl. database caches, 75% in memory
- RAMCloud would only need 25% more main memory
 - "RAMClouds may cost slightly more than caching systems, but they will provide guaranteed performance independent of access patterns or locality."

What about FlashCloud?

- Might be a good compromise
- but believe that DRAM-based is more attractive because of higher performance
- RAMCloud still 5x-10x better
- Phase-Change memory?
 - might still benefit from techniques developed for RAMClouds

Applicability

- Facebook @ 260TB (upper limit for RAMCloud)
- DRAM prices today ~=~ disk prices 10 years ago

 \rightarrow any data that could be stored cost-effectively on disk then can be stored cost-effectively in RAM today

 RAMClouds not good for Images / Video / Audio but mainly for data

Online Retailer		Airline Res	Airline Reservations	
Revenues/year:	\$16B	Flights/day:	4000	
Average order size	\$40	Passengers/flight:	150	
Orders/year	400M	Passenger-flights/year:	220M	
Data/order	1000 - 10000 bytes	Data/passenger-flight:	1000 - 10000 bytes	
Order data/year:	400GB - 4.0TB	Passenger data/year:	220GB - 2.2 TB	
RAMCloud cost:	\$24K-240K	RAMCloud cost:	\$13K-130K	

Research Issues - Low latency RPC

- Ethernet typical: 0.3-0.5ms RTT
- think it is possible to reduce to 5
 - reduce latency in switches (alr
 - reduce software overhead

 \rightarrow no GP-OS, dedicat

modify TCP protocol

of network on one core other reliable UDP based

cer with 10GE)

 \rightarrow retraction retraction \sim meouts too high in TCP, degrade latency

lit of TCP

protocol can use and otimized ack scheme

Research Issues - Durability and Availability -

 RAMCloud should be at least as good as today's disk-based systems

Buffered Logging

Research Issues - Data model -

- Low latency RPC
 - Ethernet typical: 0.3-0.5ms RTT
 - think it is possible to reduce to 5-10us
 - reduce latency in switches (already better with 10GE)
 - reduce software overhead
 - \rightarrow no GP-OS, dedicated polling of network on one core
 - modify TCP protocol or use other reliable UDP based protocol
 - \rightarrow retransmisson timeouts too high in TCP, degrade latency
 - $\rightarrow\,$ little advantage in flow-oriented nature of TCP
 - \rightarrow custom protocol can use and otimized ack scheme

Research Issues - Distribution and Scaling -

- Should scale transparently, software should not be aware of the distributed nature of the storage
- Issue: where to place data?
- No replication needed for performance reasons (b/c low latency / high bandwidth)
- Should enable data migration with applications running

Research Issues - Concurrency, consistency -

- How to handle interactions between simultaneously served requests?
 - ACID scales poorly, many web applications do not need ACID and don't wish to pay for it
 - RAMClouds extremely low latency may enable higher level of consistency than other systems of comparable scale
 - Reason: ACID is only expensive if there are many transactions competing → low latency = less aborts!
- Strong consistency still expensive if replication over data centers needed!

Research Issues - Others -

- Multi-tenancy
 - system must house applications of varying sizes
 - must scale on short notice
 - access control / security mechanisms needed
 - performance isolation?
- Server client functionality distribution
 - client side library
 - may hide object model
 - migrate functionality (code) to storage servers? security?
- Self Management

Disadvantages

- High cost per bit
- High energy usage per bit
- Floor space
 - $\rightarrow\,$ not effective for large amounts of data
- more efficient at cost/operation and energy/op \rightarrow efficient for high throughput applications
- high latency for cross-DC replication \rightarrow no gain for writes, still efficient for reads

Discussion points

Discussion points

- If there is a need, why are there no PCI-e RAMDrives used?
- If we don't have durability (security for crashes) do we need it?