Identifying Program Power Phase Behavior Using Power Vectors

Canturk Isci and Margaret Martonosi Princeton University

Overview

- A phase analysis method related to power
- Estimates for power values of 22 processor components
- Power vectors acquired at runtime
- Power signatures of programs
- Representative execution points usable for simulation

Methodology

Observations (aap)

Observations (gzip)

Power vectors for similarity

- Spatial closeness of points specified by corresponding power vectors
- Manhattan distance as measure of closeness
- $0=$ perfect similarity (black)
- Diagonal = time

First try: based on total power

Total Similarity Matrix $(r, c)=\mid{\text { Total } \text { Power }_{r}-\text { Total }^{\prime} \text { Power }_{c} \mid}$

Developing a better metric

- Base similarity on the (original) power vectors
- Manhattan distance between vectors
-

$$
\text { Original Similarity Matrix }(r, c)=\sum_{i=1}^{22}\left|P V_{r}(i)-P V_{c}(i)\right|
$$

- Problem:
- vectors of smaller magnitude are bound to be considered similar even though they may point to very different directions in power space.

Developing a better metric (2)

- Normalize vectors to avoid this pitfall

$$
\text { Normalized Similarity Matrix }(r, c)=\sum_{i=1}^{22}\left|N P V_{r}(i)-N P V_{c}(i)\right|
$$

- But: indifferent to magnitude of vectors as ratios prove to be similar
\rightarrow combine both metrics!

The final metric

$$
F M(r, c)=\min \left(\frac{O M(r, c)}{\max _{r^{\prime}, c^{\prime}}\left(O M\left(r^{\prime}, c^{\prime}\right)\right)}+\frac{N M(r, c)}{\max _{r^{\prime}, c^{\prime}}\left(N M\left(r^{\prime}, c^{\prime}\right)\right)}, 1\right)
$$

Similarity Groups

- Aim:
reduced workload size for benchmarks
still capture most of its power behavior
power signature using representative vectors
- Goals for Thresholding:
(1) Grouping execution points-power vectorsbased on their similarity
(2) Representing power behavior with reasonable accuracy with a small number of "signature vectors"

Thresholding

Representative Vectors

Error Analysis

(a) Error for representative vectors

(b) Error for selected execution points

Conclusion

- Defined combined similarity metric
- Found only considering total power conceals power phase information
- Grouping of vectors based on thresholding
- Generation of signatures based on representative vectors

Discussion

- Only show errors based on simulation :(
- Nice method to reduce benchmarking time :)

